

Real-Time Experimentation Platform for sub-6GHz and Millimeter-Wave MIMO Systems.

Joerg Widmer, Research Professor

IMDEA Networks, Madrid, Spain

Developing the Science of Networks

The endless road to higher performance

The endless road to higher performance

- Similarly for WLAN systems:
 - IEEE 802.11a/g \rightarrow 54Mbps
 - IEEE 802.11n \rightarrow 600 Mbps
 - IEEE 802.11ac \rightarrow 6.9 Gbps
 - IEEE 802.11ax \rightarrow 14 Gbps

What about experimentation?

- mmWave WLAN:
 - COTS devices, some (limited) FPGA-based testbeds
- THz communications:
 - Highly complex, some interesting preliminary work at Northeastern

• Mobile networks: 5G-NR and beyond (6G...)

- COTS devices
- srsRAN, OAI → all software (limited bandwidth, only FR1)
 Now also LDPC offloading, targeting FR2 next year
- No solutions for FR2 frequencies
 - Let alone mm-wave MIMO with multi-GHz bandwidth, etc. \rightarrow future 6G

What about experimentation?

 ADCs with Giga-sampling rates capabilities become easily available → Direct RF sampling!

5

 High speed multicore processors become popular → Move functionality to software!

What about experimentation?

5G-NR functional splits

 Standardization committees are aware of the need of changing the architecture to support the envisioned capabilities of 5G/6G networks:

From 4G C-RAN Model: ((o)) Core BBU Network Backhaul Network Fronthaul Network To 5G RAN Model: Disaggregated ((ọ)) **Baseband Unit** Core CU DU RU Network Fronthau Backhaul Network Network

https://www.5gtechnologyworld.com/functional-splits-the-foundation-of-an-open-5g-ran/

5G-NR functional splits

8

https://www.5gtechnologyworld.com/functional-splits-the-foundation-of-an-open-5g-ran/

5G-NR functional splits

• Fronthaul bit rates:

https://www.5gtechnologyworld.com/functional-splits-the-foundation-of-an-open-5g-ran/

MIMORPH platform¹

Open-source system based on Xilinx RFSoC board

- Memory-based design with hardware accelerators for time-critical functions (full DDR memory to store IQ samples)
- Main focus: ultra-high performance
- Three basic operation modes:
 - 8x8 MIMO at any sub-6 GHz frequency
 - 4x4 MIMO at mmWave via exchangeable RF frontends (e.g., 24-30 GHz or 57-71 GHz) with up to 2 GHz of bandwidth per channel! (Limited by the mmWave front-end)
 - Mixed configurations \rightarrow multiple mmWave + sub-6 GHz interfaces

¹ J. O. Lacruz, R. Ruiz, and J. Widmer. 2021. "A real-time experimentation platform for sub-6 GHz and millimeter-wave MIMO systems". In ACM *MobiSys '21*. pp. 427-439. DOI:https://doi.org/10.1145/3458864.3466868

MIMORPH platform

• Memory-based design

- Stream samples to/from on-board DRAM, offloading via Ethernet
- Easy experimentation → send & capture frames and process in software (e.g., Matlab)
- HW accelerators on the FPGA for time-critical functions
- Efficient channelizer to work with different number of RF chains and bandwidth

MIMORPH platform

Closed-loop operation

- First of its kind for open mmWave experimentation
- Several hardware accelerators to enable functionality
 - Packet detection / synchronization (currently for IEEE 802.11ay)
 - 4x4 MIMO channel estimation and beam tracking → ~100us Tx-Rx latency of the control loop
 - Nanosecond-level antenna reconfiguration \rightarrow using GPIO / SPI functionality on the RFSoC and RF front-ends

MIMORPH platform

5G \rightarrow 6G platform

Use MIMORPH as baseline design:

- 5G-NR PHY platform (flexible functional splitting)
 - Multiple 5G-NR numerologies
 - 30KHz sub-carrier spacing (FR1) \rightarrow sub-6GHz frequencies
 - 240KHz sub-carrier spacing (FR2) \rightarrow mmWave frequencies
 - ~40MHz BW (FR1) and 400MHz BW (FR2)
 - Design can be extended to support higher bandwidths

$5G \rightarrow 6G$ platform

• 5G PHY receiver:

• Some results....

Measured Channel

IQ constellation

5G \rightarrow 6G platform

- Short-term goals
 - 5G PHY transmitter:
 - Same capabilities as the designed 5G PHY receiver.
 - Implemented on the same device → allowing for full-duplex operation (Ideal for Integrated Sensing and Comm. Systems)
 - Integration with SRS-RAN:
 - Configurable numerology, flexible on-demand capabilities.

- Increase bandwidth to fit the requirements of future WLAN standards
 - Preliminary tests with single carrier IEEE 802.11ay generation / decoding with 4 GHz of bandwidth → First of its kind!

- THz communications
 - Gained a lot of attention recently!
 - Extremely challenging to have 8-10 GHz of BW!
 - Beyond capabilities of current RFSoC devices

– Possible solutions:

- Multi-ADC sample interleaving*
- MIMO THz communications \rightarrow Multi-RFSoC synchronization
 - Huge amount of data \rightarrow Requires real-time processing
 - Limited FPGA logic

* https://www.xilinx.com/video/events/a-prototype-example-of-a-10gsps-rf-adc.html

- Joint Communication & Sensing:
 - IEEE 802.11ay WLAN \rightarrow higher bandwidth:
 - Higher Resolution
 - Frequency selective channels
 - -5G-NR JCS

- MIMORPH is ready for this
- Real-time channel measurements \rightarrow more data in memory
- Cooperation between FR1 and FR2 \rightarrow best of both worlds
- Impact of the position (angle) of the person on activity recognition
 - Micro Doppler changes!

• Joint Communication & Sensing:

RAPID: Retrofitting IEEE 802.11ay Access Points for Indoor Human Detection and Sensing

SPARCS: A Sparse Recovery Approach for Integrated Communication and Human Sensing in mmWave Systems

JUMP: Joint communication and sensing with Unsynchronized transceivers Made Practical

- Real-time Machine Learning assisted communication systems:
 - ML can help to improve communication performance
 - Cope with hardware imperfections, adapt to changing conditions
 - First results that we can outperform common baselines (MMSE, ...)
 - Move ML engine to the FPGA logic
 - Not trivial: area is limited
 - Low-resolution ML engines
 - Sparse (not fully connected) architectures
 - JCAS: do sensing (like person identification & activity recognition) in real-time!

THANK YOU !