Computer Communications 225 (2024) 44-53

Contents lists available at ScienceDirect

computer

communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

t.)

Check for
updates

Exploring Data Plane Updates on P4 Switches with PARuntime

Henning Stubbe, Sebastian Gallenmiiller *, Manuel Simon, Eric Hauser, Dominik Scholz,
Georg Carle

TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748, Garching near Munich, Germany

ARTICLE INFO ABSTRACT

Keywords: The development and roll-out of new Ethernet standards increase the available bandwidths in computer

Reproducibility networks. This growth presents significant advantages, enabling novel applications. At the same time, the

Network experiments increase introduces new challenges; higher data rates reduce the available time budget to process each packet.

llsz . This development also impacts software-defined networks. Their data planes need to keep up with the increased
untime

traffic rates. Nevertheless, the control plane must not be ignored; fast reaction times are necessary to handle
the increased rates handled by data planes efficiently.

In our work, we analyze the interaction of a high-performance data plane and different implementations
for the control plane. We selected a P4 switching ASIC as our data plane. For the control plane, we investigate
vendor-specific implementations and a standardized implementation called P4Runtime. To determine the
performance of the control plane, we introduce a novel measurement methodology. This methodology allows
measuring the delay between the initiation of rule updates on the control plane and their application on the
data plane. We investigate the behavior of the data plane, its performance and non-atomicity of updates.
Based on our findings, we apply different optimization strategies to improve control plane performance. Our
measurements show that neglecting the control plane performance may impact network behavior due to
delayed updates, but we also show how to minimize this delay and, thereby, its impact. We have released
the experiment artifacts of our study including experiment scripts and measurement data.

Control plane

This publication is an extension of the paper “Keeping up to Date with
P4Runtime: An Analysis of Data Plane Updates on P4 Switches” originally
published at the IFIP Networking Conference 2023 [1].

1. Introduction

Two ongoing trends in the development of computer networks are
the continued growth of bandwidth and the increase of flexibility
for networks enabled by software-defined networking (SDN). The pro-
grammability and increased bandwidth provide the foundation to run
novel applications on these networks. Examples of such applications
include distributed control processes in the area of transportation,
industry, and medicine [2]. Using the improved programmability of
the network, e.g., through OpenFlow [3] or P4 [4], we can dynam-
ically adapt networks to the requirements of a specific application.
These requirements include the application-specific protocol and the
application’s operational demands, such as the minimal bandwidth or
the maximum latency. Consequently, new applications with custom
protocols and the popularity of programmable network devices thrive.

* Corresponding author.

A key component that enables network programmability in Open-
Flow and P4 is the match-action table. Information extracted from
protocol headers is compared to the patterns stored in this table struc-
ture (i.e., the match). Based on the detected pattern, specific tasks
are executed (i.e., the action). The behavior of a particular protocol is
realized by filling this table with the required match-action pairs. The
contents of this table can be modified at the network device’s runtime
to adapt the behavior. However, this transition from an old table state
to a new one can cause harmful delay or packet loss [5-7]. Higher data
rates exacerbate this problem, as more flows or packets can be affected
by these transient states of network devices.

A second topic essential for the implementation of new applications
is reliable execution time. Consider a situation where the roll-out of
table updates involves several devices. In the past, multiple different
strategies were proposed to perform this roll-out avoiding unwanted
behavior [8]. One possible mitigation strategy is a two-phase com-
mit, where table updates must be confirmed by participating switches
before the updates are applied to the network. Another possibility is

E-mail addresses: stubbe@net.in.tum.de (H. Stubbe), gallenmu@net.in.tum.de (S. Gallenmiiller), simonm@net.in.tum.de (M. Simon), hauser@net.in.tum.de

(E. Hauser), scholz@net.in.tum.de (D. Scholz), carle@net.in.tum.de (G. Carle).

https://doi.org/10.1016/j.comcom.2024.06.020

Received 28 December 2023; Received in revised form 28 April 2024; Accepted 30 June 2024

Available online 3 July 2024

0140-3664/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/comcom
https://www.elsevier.com/locate/comcom
mailto:stubbe@net.in.tum.de
mailto:gallenmu@net.in.tum.de
mailto:simonm@net.in.tum.de
mailto:hauser@net.in.tum.de
mailto:scholz@net.in.tum.de
mailto:carle@net.in.tum.de
https://doi.org/10.1016/j.comcom.2024.06.020
https://doi.org/10.1016/j.comcom.2024.06.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2024.06.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/

H. Stubbe et al.

the generation of a specific sequence of table updates. These updates
are designed and scheduled in a way that avoids or minimizes the
harmful effects of table updates on the network behavior. However, to
orchestrate the previously mentioned strategies, the update behavior of
individual devices must be known. A crucial component of the update
behavior is the control plane handling the rule application on network
devices. The control plane is typically realized in software. Therefore,
table updates are subject to random interrupts or short-time overload,
impacting the update behavior of network devices.

In this work, we focus on high-performance P4 switches and present
a measurement methodology to investigate their update behavior. Due
to the importance of table updates across devices, we further want
to determine the table update latency quantitatively and qualitatively.
Therefore, we introduce a setup that allows the hardware timestamping
of the entire data and control plane traffic using the same hardware
reference clock. Based on this investigation, we apply optimization
methods to create a more deterministic update behavior. We focus
our investigations on P4Runtime, which was introduced to configure,
among others, the mentioned match-action tables in P4 switches.
Aiming to unify device-specific implementations of similar control
plane interfaces, P4Runtime plays a key role in enabling programmable
network devices across different devices or vendors. The contributions
of this work include:

+ the creation of an accurate measurement setup to monitor data
and control plane simultaneously,

+ the evaluation of reconfiguration behavior and latency of a pro-
grammable switching ASIC,

+ the comparison of different control plane implementations, and

« the optimization of Linux that hosts the control plane to reduce
latency and jitter.

The remainder of this work is structured as follows. Section 2
introduces an overview of the architecture of P4 switches and presents
a short case study demonstrating the potential impact of table updates.
Related work is covered in Section 3, which investigates the state of
the art for table updates in software-defined networks with a focus
on P4. Afterward, Section 4 introduces the experiment setup used
throughout this work. Subsequently, Section 5 evaluates the behavior of
an exemplary P4-programmable ASIC. Section 6 briefly introduces the
experiment artifacts that we provide to the community for experiment
reproduction. Finally, Section 7 concludes this work.

2. Background

To better understand a system’s behavior, deeper knowledge about
its fundamental architecture can be useful. In this section, we present
a brief overview of the typical components of today’s switch architec-
tures. Based on this architecture, we describe the process for pushing
updates from the control to the data plane. We list the involved
components and the way of the update messages from initiation to
their final application. Our description focuses on the delay introduced
by different components handling the update message. Afterward, we
provide a case study on the impact of control plane latency.

2.1. Router architecture

The typical architecture of current networking devices is shown in
Fig. 1. Instead of one single processing unit, the architecture of these
devices features not only a traditional CPU but also a configurable
ASIC. This fundamental architecture is present in the switches across
multiple vendors, such as Intel [9], Cisco [10], and Arista [11], or
the open hardware design of the Wedge400 [12]. While the switch’s
CPU is programmed to handle subtasks related, in particular, to the
control plane, the ASIC focuses on the data plane. Thus, this archi-
tecture combines the benefits of CPU and ASIC. The CPU is versatile
but comparatively slow, a good fit to handle the complex tasks in

45

Computer Communications 225 (2024) 44-53

’ [] Configuration NIC [___] Component < » PCle Ethernet
l
NIC |
Regular ‘ Switch
CPU "7 pcre ASIC

Control Plane i Data Plane

Fig. 1. High-level switch architecture.

Table 1

Optical Ethernet standards, transmission rates, and corresponding serialization delay
of a minimum-sized Ethernet packet (60B packet + 4B frame check sequence + 12B
inter-packet gap + 7B preamble + 1B start-of-frame delimiter), number of packets
impacted for 1ps of control plane delay.

IEEE standard TX rate Serialization Impacted
[Gbit/s] delay [ns] packets [#/ps]

802.3z [13] 1 672.0 2

802.3ae [14] 10 67.2 15

802.3bm [15] 100 6.7 150

802.3bs [16] 400 1.7 589

P802.3dj [17] 1600 0.4 2500

the control plane. The ASIC offers raw packet processing performance
with limited complexity, which enables the data planes to handle
billions of packets per second on a single ASIC. The communication
between these two components is essential to ensure that CPU and
ASIC work together as a single switch. Here, two popular options for
communication channels are observable and often combined: Ethernet
and PCle. The former allows for the message exchange as envisioned
in software-defined networking, e.g., for the data plane to forward
unhandled packets to the control plane. PCle, on the other hand, is a
convenient interface to change the ASIC’s state. Such state changes can
include, e.g., reprogramming the ASIC to handle packets differently or
updating its configuration, such as match-action table entries in P4.

Hence, in this switch architecture, a control plane update, issued
externally by another party, is processed as follows: Initially, the other
party sends its update message to the system in charge of the switch’s
control plane running on the traditional CPU. The control plane system
often has a separate NIC (cf. Fig. 1) to receive such update messages. Af-
ter reaching said NIC, the update message passes through the system’s
network stack until it reaches the application listening on the addressed
port. The application then processes the message’s information and
translates it into a sequence of PCle transactions involving the ASIC.
In case of an update, these transactions ensure the addressed table and
table entries exist, replacing the intended table entry value. Only after
that, the data plane processes future packets according to the updated
table. Therefore, a single control plane update message is passed over
multiple layers of hardware and software on the control and data plane,
impacting the observed delay for the update message.

2.2. Case study: Control plane latency

Our case study focuses on the impact of latency in the control plane.
More precisely, we want to determine a lower bound for the latency in
state updates caused by the processing of the update message inside
the control plane. In view of the architecture in today’s switches, the
update process can be divided into several steps:

(1) the update process starts with the reception of a P4Runtime
message on the control interface of the control plane;

H. Stubbe et al.

(2) then, the information required for the update is transferred via
PCle from NIC to RAM (or directly into the CPU cache [18]);

(3) afterward, the update message is processed on the CPU itself,
and,

(4) finally, the update process is completed with the PCle transfer
of the computed update from the CPU to the ASIC.

Gallenmiiller et al. [19] measured a median latency of 3.3 ps be-
tween the ingress and egress interface of a simple packet forwarding
application. Their latency measurements were performed on an Intel
Xeon D-1518 CPU running Debian-based Linux. A similar system on a
chip (SoC) and operating system (OS) is also used in the control plane
of the switch that was investigated in this paper. Gallenmiiller et al.
used a simple forwarding application, introducing a CPU overhead of
approx. 100 clock cycles per packet. The similar hardware and software
architecture provides a realistic lower-bound estimate for the process-
ing of packets in the control plane. For the control plane application, we
expect higher latencies due to the more complex processing of update
messages. Applying the update to the ASIC on the data plane involves
an additional PCle transfer of information, causing additional latency.
Neugebauer et al. [20] measured a median round trip time of 800ns
for a minimum-sized 64-B packet across the PCI express bus. Their
measurements do not involve any processing of the packet data on
the CPU, e.g., in the driver. The underlying hardware (NIC, x86 CPU),
control plane OS (Debian-based Linux), and the procedure (message
reception, processing, and transfer via PCle) are similar to a typical
switch data plane. Based on these numbers, we expect a control plane
latency in the order of several microseconds.

Table 1 shows the packet serialization delay for minimum-sized
Ethernet packets for standardized bandwidths between 1 Gbit/s to
1.6 Tbit/s. To show the impact of delays, we added the number of
impacted packets over a timespan of 1 ps for each rate. For illustration
purposes, our table only lists the impact of a 1-us delay. During a 1-ps
timespan, two minimum-sized packets will pass a 1-Gbit/s link. A delay
of 1 ps on the control plane would, therefore, impact two packets on
a 1-Gbit/s link on the data plane. While a low number of impacted
packets may be considered negligible, their number grows for higher
bandwidths (cf. Table 1).

The numbers reported in Table 1 only consider a 1-ps delay. If
we assume the higher control plane delay of 3.3 ps, the numbers are
multiplied by a factor of 3.3. Worst-case latencies over 1ms were
observed by Gallenmiiller et al. [19,21] and Neugebauer et al. [20].
With these ms-delays, the number of impacted packets grows into
millions. These high, indicative numbers and the high variance of the
previously mentioned delays justify a closer investigation, which we
will present in the following.

3. Related work

Our work investigates switches executing P4 programs managed by
software-based control planes. In the following, we investigate related
work from these three areas.

Switches. Updating the forwarding rules of running networks can cause
unwanted side effects if partially old and new configurations are ap-
plied to specific packets [5-8]. To avoid these transient states between
updates and their impact, Reitblatt et al. [22] have introduced a set
of primitives to perform consistent updates on programmable switches.
Their architecture guarantees per-packet consistency, i.e., at any point
in time, there is a well-defined ruleset to be applied to a specific
packet. Tycho-Forster et al. [8] provide a detailed survey investigating
different strategies to solve the negative impacts of switch updates.
Their survey mainly focuses on the algorithmic solution of network
updates. Jin et al. [23] propose Dionysus, a mechanism to lower
update times by optimizing the scheduling of individual switch updates.
Due to the different impacts of individual updates on each other, an
optimized schedule helped lower the update deployment by 61% in

46

Computer Communications 225 (2024) 44-53

a real-world testbed. OFLOPS-SUME [24] is a framework that allows
the measurement of OpenFlow data and control planes. A study on
the software-based Open vSwitch and an Edgecore hardware switch
uncovered inconsistent transient behavior during table modifications
and modification delays of up to several hundred milliseconds. Han
et al. [25] present BlueSwitch, a switching architecture that enforces
per-packet consistency on a single switch. Their architecture solves the
problems of inconsistent behavior on a hardware level, demonstrated
on a NetFPGA-10G-based prototype.

P4. P4 [4] is a domain-specific language to program the data plane,
which supports programming different types of data plane devices,
such as switches. P4ARuntime [26] standardizes the management of data
planes utilizing a vendor-independent API. This API allows rule inser-
tions, deletions, or updates of P4 data plane elements. P4ARuntime relies
on gRPC [27], a high-performance framework for remote procedure
calls. Adoption of both is growing; e.g., Intel Tofino is a switching
ASIC that supports P4 and P4Runtime natively [9]. Song et al. [28]
measure an update performance between 30 000 and 80 000 entries per
second for an Intel Tofino switching ASIC, depending on the insertion
batch size and the utilization of the match—-action table. Zeng et al. [29]
observed similar limitations. They attribute the low performance to the
slow control plane CPU, a limited PCle interconnect between the CPU
and switching ASIC, and the limited amount of memory on the ASIC,
which requires expensive hashing computation and lookups.

Software-based control planes. Recalling the switch architecture (cf.
Fig. 1) prevalent on P4 hardware, P4Runtime messages are typically
processed in a software-based control plane. Therefore, we need to
investigate Linux, the operating system (OS) used for control planes.
Linux-based software packet processing systems are subject to de-
lays in the millisecond range. Gallenmiiller et al. [19,21] describe
several effects causing that type of delay, such as the OS network
stack or interrupts. Modern ASIC-based (P4) switches typically rely
on a Linux-driven control plane that introduces the same delays to
switches. Linux-based network stacks have been researched in the
high-performance, low-latency networking community for decades. The
Linux network stack employs a technique called NAPI [30] that al-
lows dynamic switching between an interrupt-based and a polling-
based packet reception. This adaptive mechanism improves throughput
but introduces jitter and latency compared to a purely polling-based
approach. Unsatisfied with this stack’s performance, alternative user-
space implementations were proposed, including DPDK [31]. DPDK
relies exclusively on polling for packet reception, lowering jitter and
latency. To make the benefits of DPDK easily accessible, DPDK features
several examples, including a basic Layer 2 (Ethernet) forwarder called
12fwd. Naturally, bare-bone sample implementations such as this are
in no direct comparison to full-fledged control plane implementations.
The latter does not only handle packets but has to solve more advanced
problems such as abiding by access policies or computing optimal
routes. Nevertheless, achieving performant control planes benefits from
performance improvements in any of its components. Thus, performant
user-space implementations, such as DPDK, are of interest for such
projects. Other projects also picked up on the idea of increasing DPDK’s
ease of use, e.g., the packet generator MoonGen [32]. The preemptive
nature of the Linux kernel allows interrupting running processes, intro-
ducing jitter. A study by Reghenzani et al. [33] investigates real-time
patches available for the Linux kernel that create a more stable and
predictable behavior. The tickless Linux kernel (cf. Subsection 5.1 on
the NOHZ kernel) [34] further improves predictability and low-latency
behavior for applications by disabling scheduling interrupts (also called
ticks) on specific CPU cores.

Processing performance. Data plane updates on switches may cause un-
wanted effects for packets processed during transient states. Although
solutions exist to avoid the negative impacts of these transient states,
we did not find a detailed study that investigates the update process for

H. Stubbe et al.

Time of Reception Time of Application

} dull }
AN ‘ dcontrol “ ddata ‘ Time
;@ Processing
=" _ cppDpP
Control Plane (CP) Transfer
Data Plane (DP) = -
Processing

Fig. 2. Switch update delay (d) for forwarding and processing of control plane
messages.

a single, modern P4 switch. When offloading applications to P4 data
plane elements, table updates may impact a wide range of different
applications. In this work, we want to create a methodology to measure
not only the maximum number of possible updates for a given interval
but also to investigate individual data plane updates and their impact.
In addition, we consider delays that may be introduced by the control
plane and how to lower the control plane impact.

4. Measurement methodology

For 100-Gbit/s-networks, a new packet can be received in less than
10ns (cf. Table 1). Our measurement methodology and setup need to
consider this challenging requirement to perform effective measure-
ments. For these measurements, we need to correlate control plane and
data plane traffic to determine the time between the reception of a table
update in the control plane of a P4 switch and its actual application
on the data plane of this P4 switch. In the following, we introduce
our general approach to measuring and the specific setup used for our
measurements.

4.1. Scenario description—A table update

Fig. 2 shows the process of a table update for a single P4 switch. The
table update is received (Time of Reception) and processed on the control
plane, transferred to and processed on the data plane before the table
update is applied to the packet on the data plane (Time of Application).
We refer to the total delay between reception and application as dy,
which can be split into two components: (i) The time the update is
handled on the control plane, which we call d g0, and (ii) the time
the update is handled on the data plane, which we call dg4,,. Despite
being part of the same switch, the control plane and data plane can
be seen as two interconnected but separate systems (cf. Fig. 1). On
the control plane, the table update is received on a NIC port that
is physically connected to the CPU of the control plane. The control
plane software runs on a Linux system that runs on the previously
mentioned CPU. During dqy0), the message is handled in software
and, hence, subject to the jitter and delay caused by the OS, i.e., the
Linux kernel. The data plane handles the traffic received via the actual
switching ports of the P4 switch. These ports are physically connected
to the switching ASIC and not directly connected to the control plane
CPU. As soon as the table updates are handed over to the data plane,
they are no longer subjected to the previously mentioned effects on the
control plane. The main focus of our investigation is the measurement
of delay and jitter during the time of a table update. Additionally, we
are interested in the events on the data plane during this timeframe.
Events of interest are, e.g., packet drops or partially applied updates.

4.2. Measurement challenges

The control plane side of the switch uses well-known system com-
ponents, i.e., CPU, NIC, or OS. With access to the control plane OS

47

Computer Communications 225 (2024) 44-53

and due to the well-understood architecture, we can perform white-box
tests. Such tests allow the investigation of table updates from within the
switch during d g1 For Linux, standard tools are available such as the
profiler perf, that can be used to investigate a system. The data plane
side is a different kind of system. It runs on a proprietary ASIC that
limits our measurement capabilities. With limited access to the inner
structure of the switching ASIC, we cannot perform white-box tests and
cannot directly measure the time of application, i.e., dg,¢,-

Despite the ability to run white-box measurements on the control
plane, these measurements come with attached restrictions. Running an
additional measurement application on the control plane may impact
the behavior of the control plane itself. For instance, jitter can be
introduced by software interrupts for profiling, which hamper accurate
and precise latency measurements in software, especially considering
the ns-delays that we expect to measure.

The switch architecture with the separate control and data plane
systems impedes delay measurements. Both, the CPU and the P4 switch-
ing ASIC, utilize separate system clocks. To determine d,j;, both clocks
need to be synchronized. Control and data plane possess clocks that pro-
vide the necessary timer resolution in the ns-range. For x86-CPUs, there
is the TSC that offers a high timer resolution based on the CPU clock,
and our switching ASIC also offers timestamps with a ns-resolution.
Due to the proprietary nature of the switching ASIC, synchronizing via
standardized timing protocols such as NTP or PTP is not possible.

4.3. Solution

Due to the impacts of white-box measurements on the control plane
and the impossibility of such measurements on the data plane, we opted
for a black-box measurement approach. In the black-box approach,
measurements are performed externally. Here, packets are timestamped
just before they arrive on the switch or shortly after they have left the
switch. For the control plane, the black-box approach does not require
the deployment of measurement software on the switch, i.e., there is
no performance impact on its behavior. The black-box approach also
works for the data plane as measurements are created externally.

To perform the black-box measurements, we use a setup already
described by Gallenmiiller et al. [21]. This setup uses passive optical
splitters that create a passive clone of each packet that is received and
sent by the switch. With passive splitters, we avoid the impact of any
active component on the delay of packets. The packets are precisely
timestamped in hardware, which avoids any impact of OS or other
software on measurements. At the same time, hardware timestamping
ensures precise timestamps in the ns-range.

The black-box approach requires the observation of multiple ports at
the same time. One port is attached to the control plane; the other ports
are attached to the data plane. Timestamping the time of reception on
the control plane port can be done by recording the timestamp of the
table update message. The time of application cannot be determined
directly as the data plane does not create an explicit update message
at the time of application. However, we can observe the impacts of the
table update indirectly. First, we timestamp all ingress and egress traffic
from a specific observed data plane port. Second, we detect the effects
of the update message on the data plane traffic (i.e., the change of a
specific header field). Finally, we can correlate the update message on
the control plane with the first egress packet that contains the specified
update. As both packets are timestamped, we can calculate d,j.

The black-box measurement does not require precisely synchronized
clocks between control and data plane. We use a single device for
timestamping all packets. This timestamping device uses a shared clock
for all of its ports, therefore, all timestamps use a common reference
clock, rendering synchronization unnecessary. The lack of synchroniza-
tion and the lack of software deployed on the device under test lowers
the complexity of the measurement setup.

H. Stubbe et al.

[JRole — 1 Gbit/s — 10 Gbit/s 4 Optical Splitter

Control Plane i Data Plane

B

CtrlGen |

DuT .| DataGen

A

Fig. 3. Measurement setup overview.

Table 2
Hardware components of our measurement setup.

Device CPU Memory NIC

CtrlGen Intel Xeon E5-1650 128 GB Intel X710

DataGen Intel Xeon E5-1650 128 GB Intel X710

DuT Intel Xeon D-1548 32GB Intel 1350

TS Intel Xeon D-1548 32GB Endace DAG 10X4-S
4.4. Setup

The setup (cf. Fig. 3) implements the previously described solution.
It consists of four roles: two load generators (CtrlGen & DataGen), one
device-under-test (DuT), and one time-stamper (TS). Both load genera-
tors supply the DuT with constant bitrate traffic, differing mainly in the
targeted component of the DuT. While one load generator applies the
load to the control plane interface of the DuT (CtrlGen), the second one
targets the DuT’s data plane (DataGen). In our experiments, both load
generator roles are assumed by the same physical host. The TS monitors
the information exchanged between the load generators and DuT via
optical splitters. The splitter-based setup allows the TS to timestamp
events on the control and data plane with the same shared reference
clock. The optical splitters are passive; hence, the measurement system
does not introduce additional jitter. All used cables have the same
length of 3m between CtrlGen, DataGen, TS, and the DuT, i.e., the
delay is not skewed by different cable lengths.

Both load generators employ MoonGen [32] as packet generator.
They run on an Intel Xeon E5-1650 CPU equipped with 128 GB memory
and an Intel X710 NIC. The DuT, the Stordis BF2556X-1T-A1F switch,
consists of a P4-programmable ASIC combined with an Intel Xeon D-
1548 CPU equipped with 32GB memory and an Intel I350 NIC on
the control plane [35]. Notably, this DuT features an optical control
plane interface that enables it to be attached to the passive optical
splitters. We use different applications on the control plane of the
DuT to investigate the impact of techniques, such as NAPI or DPDK, on
latency and jitter. Lastly, to timestamp packets, we used Endace’s DAG
10X4-S [36] on a host whose properties match the DuT’s. The quad-
port Endace NIC supports hardware timestamping the entire traffic with
the same clock on all its ports at 10 Gbit/s line rate with a resolution
of 4ns. Table 2 lists the hardware components of our setup. While
the DuT runs on Ubuntu 20.04 LTS and the TS relies on Ubuntu
18.04.1 LTS, Debian buster is used as the load generator’s OS. The
different OS distributions and versions were used due to the different
requirements of the software frameworks for the switching ASIC, the
Endace timestamping framework, and MoonGen.

4.5. Experiment description
Based on our case study (Section 2.2), we expect a significant

impact on d,; on the control plane. We plan to investigate the con-
trol plane application itself and additional parameters for the control

48

Computer Communications 225 (2024) 44-53

plane OS. Therefore, we discriminate our experiments based on the
P4Runtime implementation used and the DuT host configuration. Sec-
tion 4.6 discusses the different types of control plane applications that
we investigate. Additionally, we measure the impact of either the OS
default configuration or a configuration optimized for low latency.
Here, the low-latency optimized configurations build on experiences
from previous work [19,21].

All experiments share the same fundamental structure. Following an
initial configuration phase, the setup behaves as follows: The DataGen
emits packets with a size of 64B at a constant bit rate. Each of
these packets is processed by the DuT and afterward sent back to
the DataGen. On the data plane of the DuT, every received packet is
matched against a P4 match-action table. This table is configured
as an exact match with a MAC address as the key value. Due to the
exact match, the program uses SRAM exclusively. TCAM is not used
because the exact match does not rely on any ternary or longest prefix
matching. Moreover, this data plane program, including the tables, is
very lightweight. We only require one of the several available pipelines
and allocate less than 10% of its resources. The P4 program writes the
value of this table to the source address field of the Ethernet header for
the egress traffic. Throughout the experiment, the value of the MAC
address in the P4 table is constantly modified via the control plane.
The CtrlGen sends a stream of P4Runtime modification messages at a
constant rate. Each of these messages contains a new value for the
Ethernet source address. We use a packet forwarder on the DuT that
receives the P4Runtime modification messages and applies the modifi-
cation utilizing one of the respective P4Runtime implementations. After
processing the P4Runtime messages, the forwarder sends the packets
back to the CtrlGen. Hence, enabling the TS to capture ingoing and
outgoing packets for both load generators.

Based on this observation of received and sent packets, the process-
ing delay (d,y;) of the DuT can be determined, i.e., the time required for
a modify instruction received via the control plane to be visible on the
data plane. To detect the changes on the data plane in a timely manner,
high packet rates with a short inter-packet gap are required. Therefore,
the data rate on the DataGen impacts the accuracy of our measurements
and should be maximized. The packet rate on the CtrlGen does not
impact measurement accuracy. A goal of our measurements is to show
a use case during normal operation, not during phases of overload
with unnaturally high latency. Thus, we choose conservatively low
packet rates for the CtrlGen to avoid overloading the control plane.
To evaluate the processing latency induced by the DuT, during an
experiment, the CtrlGen transmits instructions at a constant rate. All
observed processing delays are recorded by the TS for later evaluation.
To avoid latency artifacts caused by newly started applications due to
an empty CPU cache, we exclude the first seconds of each measurement
for our latency calculation.

4.6. Control plane applications

Our measurements consider different impact factors for the control
plane application. First, we investigate a forwarder application where
packets are exclusively handled on the control plane. This measurement
acts as a baseline measurement to determine the impact of the control
plane on the forwarding process without any data plane involvement.
Second, we measure the impact of the actual control plane implemen-
tations. We consider aspects such as the used programming languages
or vendor-specific implementations. Third, we determine the impact of
the table update messages. Therefore, we generate different kinds of
table update messages.

Forwarder implementation. We expect that the choice of the packet
forwarder handling the modification messages significantly impacts
processing latency. Therefore, we investigate three different kinds of
forwarding applications:

(F1) a Python-based implementation using the Linux network stack;

H. Stubbe et al.

(F2) a C-based implementation relying on the Linux network stack;
(F3) a C-based DPDK implementation (12fwd).

Past experience suggests that compiled applications, i.e., (F2) and
(F3), have an advantage compared to the interpreted Python (F1). We
expect further performance benefits for the DPDK-based implementa-
tion (F3) that relies on the optimized DPDK stack entirely bypassing
the Linux network stack.

P4Runtime implementation. As mentioned, we discriminate our exper-
iments based on the used P4Runtime implementation with the goal
of measuring the impact of the different PARuntime implementations.
Therefore, as said, the DuT’s forwarding application will execute the
respective control plane implementation’s callback for each received
packet. In this work, we consider three different implementations avail-
able on our switch:

(I1) a Python-based implementation supplied by the vendor of the
ASIC, targeting the DuT’s ASIC;

(I2) a C++-based gRPC implementation designed to conform with
the P4Runtime specification;

(I3) a C++-based implementation, also relying on the vendor-
specific, and, thus, device-specific, interface.

Given that both (I1) and (I3) were written with a particular switch-
ing ASIC in mind, a performance benefit due to device-specific opti-
mizations is likely. At the same time, as mentioned before, an advan-
tage of the compiled C++ applications, i.e., (I12) and (I3), compared
to the interpreted (I1), is expected. Both the vendor-specific controller
implementation and the P4Runtime implementation are built in soft-
ware. While the latter is a generic API used for different switches, the
vendor-specific API can be specifically optimized for the underlying
hardware.

P4Runtime table manipulation operation. Following the P4Runtime spec-
ification [26], a limited number of operations can be performed on
tables:

1. new entries, non-existing keys with their value, can be added via
insert;

2. present or predefined entries may be removed;

3. alternatively, modify allows to replace existing entries retaining
the key while changing the associated value.

Among these, the modify operation is the most expressive. The modify
operation can be used to implement the add and remove operations.
An exemplary implementation could rely on pre-populated tables and
a noop action, such as P4’s NoAction. Then, an add would update
the entry to replace the noop action with the desired one. Conversely, a
delete would modify the entry to use the noop action instead. While this
modify-only approach relies on large tables, the availability of content-
addressable memory in modern network devices compensates for the
overhead of an increased table size. Following this argument, our work
focuses on the modify operation.

5. Evaluation

The center of our investigation is the delay and its jitter observed
between control plane table modification and the modification’s man-
ifestation on the data plane. This investigation requires an in-depth
analysis of the DuT behavior during the application of modify oper-
ations.

During each experiment, a single 10 Gbit/s port of the DuT’s data
plane was subjected to load traffic with a constant rate of 6 Gbit/s at a
packet size of 64 B (approx. 8.9 Mpkt/s). Simultaneously, on the control
plane, table modifications were triggered with a rate of 100 Hz by the
CtrlGen. The control plane traffic was sent to the DuT’s 1 Gbit/s NIC
port directly attached to the control plane.

49

Computer Communications 225 (2024) 44-53

Python C DPDK
—— Python (NOHZ) C (NOHZ) DPDK (NOHZ)
10° F]
Z 10 !
> B
Q n|
g RS u|
IR o i S Sy
100
0 50 90 99 99.9 99.99 99.999

Percentiles [%]

Fig. 4. Baseline measurements for the processing latency of the control plane.

Overwhelming a device with packets fills up buffers, leading to high
latencies. To determine the latency of the non-overloaded DuT, we
want to avoid buffering of any packets on both the control and data
plane. Both planes’ rates are chosen such that an increase of either
results in a degradation of observed latencies, i.e., preceding analyses
indicated a non-overload state of the DuT for these parameters. For low
data plane rates, we did not observe a correlation between data plane
utilization and processing latency. For higher rates, however, latency
on the data plane increased linearly.

We excluded a warm-up phase of 10s at the beginning of each
measurement. This was done to avoid measuring latency caused by
ramp-up effects of the control plane application, such as first-time cache
misses. The measurement time for our presented results lasted for 50s.

5.1. Table modification delay—Packet reception

We assume the software-based control plane to contribute signifi-
cantly to the overall delay of table modifications. Therefore, we want to
investigate the major steps in the processing chain of table modification
messages. The first step in this processing chain is the reception of
the modify messages on the control plane. For the reception, we want
to investigate relevant aspects that we previously identified as factors
contributing to delay: (a) the programming language of an application,
(b) the software interface used to access packets, and (c) the interrupts
introducing jitter to a running application.

To measure the delay of the message reception procedure, we use
a simple Layer 2 forwarding program. To avoid any impact of the con-
troller application on the message reception, we only run the forwarder
on the control plane system. The forwarder receives packets on the NIC
port of the control plane and sends them out on the same port without
any further processing. We use this forwarder to measure the latency in
our setup, which relies on hardware-timestamped packets. Compared
to the control plane implementation, a forwarder includes additional
tasks, such as sending the packet. Therefore, our measurements of
the forwarder overestimate the latency of the investigated control
plane implementations to some extent. Assuming symmetric receive
and transmit paths, the measured roundtrip times can effectively be
halved to determine the message reception times.

Impact of the programming language. We have chosen two forwarders,
written in Python and C, to demonstrate the effect of the programming
language on the packet processing delay. Python is an interpreted
scripting language relying on an automated garbage collector. The in-
terpretation of the code and the execution of the garbage collector may
introduce unwanted jitter into a controller application that we expect
to run continuously. The C language is compiled and does not use an
automated garbage collector; therefore, we expect a lower jitter. Fig. 4
shows the results of the Python and C forwarder as dashed lines. We use
a percentile distribution graph to visualize the measured latency [37].

H. Stubbe et al.

This type of graph highlights the latencies at high percentiles (>99.x),
characterizing not only latency but also the jitter in a more expressive
way. This is a clear benefit over traditional representations of latencies
in histograms or CDFs that hide high but rare latency events in long,
hard-to-read tails. For the Python forwarder, we observed a median
latency of 106 ps that rises up to 205 ps for the 99.99th percentile. The
C forwarder has a median latency of 61 ps that increased to 94 ps for the
99.99th percentile. These numbers indicate a significant advantage for
the C language. The latency is significantly lower for the C forwarder,
but also the jitter, as numbers increase substantially less for the high
percentiles of the C forwarder.

Impact of the packet reception API. Linux offers a flexible but complex
network stack supporting various protocols or dynamic mechanisms
such as NAPIL. Frameworks, such as DPDK, allow bypassing the Linux
network stack and provide their own simpler stack that offers higher
performance. For this work, we investigated whether DPDK provides
lower latency or jitter for the control plane. To measure the latency of
DPDK, we use the DPDK 12fwd. Its latency is shown in Fig. 4, with a
median latency of 5 ps and a latency of 22 ps for the 99.99th percentile.
These figures demonstrate that DPDK can significantly improve latency
and jitter compared to the previously measured C-based forwarder
utilizing the Linux network stack. However, the figures also indicate
that even with DPDK, outliers do occur. We attribute these outliers to
interrupts issued by the Linux kernel briefly stopping packet process-
ing. We observed similar outliers for DPDK applications in previous
work [21].

Impact of the Linux kernel. The Linux kernel utilizes interrupts for
specific tasks such as scheduling. The execution of these interrupts
can, therefore, introduce jitter to currently running applications. To
mitigate these problems, a low-latency kernel was developed [34].
These low-latency features have to be compiled into the Linux kernel.
As an additional measure, critical processes on the DuT can be pinned
to isolated CPU cores (cf. Gallenmiiller et al. [19,21]). To utilize the
features of this kernel, we compiled a new Linux kernel with the flag
CONFIG_NO_HZ_FULL enabled. In this work, we refer to that kernel
as the NOHZ environment. The Linux scheduler needs to regularly
check if a CPU core needs to be yielded to another process. This
check is performed during regular interrupts or so-called ticks. The
NOHZ kernel allows to disable these interrupts on dedicated cores.
With scheduling interrupts disabled, processes running on these ded-
icated cores are no longer interrupted, lowering the observed latency
and jitter. However, it also means that these CPU cores cannot be
shared between applications. Therefore, only a single process can run
on a NOHZ core. If two or more processes are executed on such a
core, interrupts are re-enabled, and the kernel behaves like a regular
Linux kernel. By comparing these two environments with each other,
the possible impact of a non-optimized standard configuration on the
DuT’s performance can be estimated; thus, possibilities to shape the
DuT behavior for high-performance scenarios become apparent. To
ensure comparability, both environments rely on the same Linux kernel
version: 5.4.0-105.1109.

We repeated our measurements of the three different forwarders on
a NOHZ kernel, to measure the potential for improvement. Fig. 4 visu-
alizes these latencies using solid lines. We see significant improvements
for all three forwarders. For the Python forwarders (median: 14 ps,
99.99th percentile: 17 ps) and C (median: 12ps, 99.99th percentile:
22ps), latency and jitter were significantly improved. For the DPDK
forwarder, we measured the same median latency of 5ps as for the
regular Linux kernel. At the 99.99th percentile, latency was reduced
to only 11 ps. We observed that the latency increase for the DPDK
forwarder, running on a NOHZ kernel, happens at a higher percentile,
e.g., the 99th percentile.

Looking at the results, we claim to have achieved our initial goals.
We have shown that the latency and jitter can be significantly im-
proved. The best results were achieved using a compiled language

50

Computer Communications 225 (2024) 44-53

Python GRPC Specific
—— Python (NOHZ) GRPC (NOHZ) Specific (NOHZ)
10% ¢
= 103; r“’_’—ip—wm *;
= 5 | E
5 —r
] S o= 1
& s]
= 10tk E
100 -)
0 50 90 99 99.9 99.99 99.999

Percentiles [%]

Fig. 5. Percentile distribution of processing latency.

based on the DPDK framework running on a NOHZ Linux kernel,
improving latency as well as jitter significantly. OS interrupts will
still impact the latency of DPDK applications, therefore, the tickless
kernel also improves the jitter of DPDK applications. However, further
optimizations of the kernel network stack will be irrelevant as packets
bypass the OS network stack when using DPDK.

5.2. Table modification delay—Packet processing

The previous section investigated the impact of the packet recep-
tion process on latency and jitter. In this section, we quantify the
latency and jitter impact of the actual control application. Based on the
previously identified benefits of DPDK, we adapted the three control ap-
plications to use DPDK. For our investigation, we compare the observed
receive time differences between a forwarded table modify instruction
and the first data plane packet affected by this modification at the TS.
We introduced this timespan as dy;;. The results of this comparison are
summarized in Fig. 5 as a percentile distribution. The figure depicts the
recorded receive time differences, i.e., the DuT’s processing delay of the
three investigated implementations, emphasizing higher percentiles.

Python-based implementation (I1). The results in Fig. 5 show a median
latency of approx. 590 ps and 557 ps for the generic and NOHZ Python
implementation, respectively. However, starting around the 99.9th per-
centile, the NOHZ variant performs worse, i.e., during the experiments,
it has a higher tendency for outliers. The highest processing laten-
cies for generic and NOHZ variants were approx. 1442 pus and 885 s,
respectively.

Despite profiting from DPDK, the Python implementation has a com-
paratively high mean processing latency. We attribute this to Python
being an interpreted language with a garbage collector and its global
interpreter lock preventing concurrent execution of Python byte-code.
While implementations other than the tested CPython might yield
improved performance, this is not considered in this work.

C++-based gRPC implementation (12). Similar to the Python-based im-
plementation, the observed latencies of the NOHZ variant surpass the
generic variant but for about 1% of the cases. With 262 ps to 475 ps
and 126 ps to 1835 ps, generic and NOHZ variants offer lower minimum
processing delay than the Python-based implementation. However,
outliers with poor worst-case latency overshadow this benefit.

Arguably, the best-case delay, compared to the Python-based ap-
proach, can partly be attributed to the availability of compile-time
optimizations. Additionally, the benefit of avoiding interrupts posi-
tively influences induced latencies in the NOHZ case. However, this
benefit turns into a disadvantage when considering percentiles above
99%. As low-latency optimization is a delicate undertaking, an inconve-
nient combination of interrupts and modify instruction arrival is likely
the cause of this behavior. Plus, the implementation’s use of GRPC, a
library relying on threading, conflicts with the need to have at most
one runnable process or thread per CPU when using NOHZ.

H. Stubbe et al.

C++-based vendor-implementation (13). The third investigated imple-
mentation is the vendor-provided ASIC-specific implementation. With
best-case processing latencies around 22ps to 26 ps rising to 237 ps
to 2490 ps in the worst-case, this implementation provides the most
promising processing delay, apart from few outliers. In contrast to the
other implementations, this ASIC-specific implementation noticeably
suffers from NOHZ optimization. Given that NOHZ optimizations shine
when processes are pinned to individual cores and with the archi-
tecture of the DuT’s non-ASIC component in mind, a probable cause
for this negative correlation stems from the inability to pin processes
appropriately. On the other hand, one major benefit of this ASIC-
specific implementation and architecture shows when comparing this
implementation’s performance with the other two: the ASIC-specific
implementation outperforms both.

Discussion. Our measurements show a clear difference between the
three implementations. We observed the highest median latency for the
Python-based P4Runtime Implementation (I1) (590 ps) and the lowest
latency for the vendor-specific C++-based Implementation (I3) (22 ps).
The C++-based gRPC Implementation (12) (262 ps) provides a middle
ground with a latency between the two other implementations. These
numbers show that ease of use and increased flexibility come at a
price. In this case, the price can be up to several hundreds of microsec-
onds. Table 1 shows that data plane bandwidths of 100 Gbit/s up to
150 pkt/ps are impacted. The choice of the control plane application
can, therefore, affect several ten thousand packets for just a single
modification. For percentiles of >99.9, latency rises significantly for
all three implementations by 200 to 300 ps. This worst-case latency
must be respected if we want to assume that a table modification is
applied with a high probability. Therefore, even more packets may
be affected during the modification period d;. Intuitively, the move
toward a tickless kernel is associated with reduced jitter. However, as
discussed, this only partially holds true in these experiments. Results
were counter-intuitive; we saw a positive impact on mean latency;
however, jitter is significantly increased when looking at higher per-
centiles. We suspect the root cause to be the complexity of the software
architectures used on the DuT; an effective optimization depends on
the well-tuned interplay of all components. Arguably, the complexity
of the software architecture and the specialization of the hardware
architecture suggest a limited portability of these findings. However,
there are shared elements across typical data center switches—a control
plane based on commercial off-the-shelf hardware running Linux, cf.
Fig. 1. Effects caused by this common platform will be observed on
all platforms sharing these elements. Other effects that are caused by
device-specific hardware or software components must be measured on
a per-device basis. However, Gallenmiiller et al. [21] indicate that the
impact of the common components, Linux and the used software stack,
are prone to dominate overall latency. Other factors such as the NIC
have only a limited impact on the system performance. To optimize
the latency of switches, one should focus on the factors with the highest
impact on latency, i.e., the OS and the software stack, which are likely
to be similar on all switches.

5.3. Table modification behavior

Moving away from the latency-focused discussion, another observa-
tion is noteworthy. For all investigated implementations, an intermedi-
ate state of the DuT was observed for some modify instructions. In these
cases, neither the match-action table entry before the modification
nor the one after was applied to processed packets on the data plane.
Instead, the table’s default action was applied to up to three consec-
utive packets. In other words, the modify instruction is not applied
atomically. Instead, we assume a table entry modification is realized
as a delete followed by an insert. Unfortunately, neither a validation
nor a more thorough analysis of this assumption is feasible due to the
driver distribution policy. Regardless, we attribute the non-atomicity

51

Computer Communications 225 (2024) 44-53

[~ Python GRPC Specific |
ST
: I
g 102% i

Time [s]

Fig. 6. Per-second mean packet sequence length subjected to default action (outliers
show standard error; top) vs. processing latency over time (bottom).

not to the PCle bus as the mechanism used to transfer the update to the
ASIC. The transfer mechanism does not influence the atomicity. Other
approaches, such as Direct Memory Access (DMA), show similar behav-
ior regarding atomicity. Mitigation through software seems feasible but
is not within the scope of this work.

Fig. 6 compares the observed processing latency and the number
of times the default action was applied to a packet throughout an
experiment. The upper subfigure shows the per-second mean number
of consecutive packets processed according to the default table entry of
the DuT. Further, the upper and lower fliers in the top subfigure rep-
resent the standard error. The depicted number of packets is obtained
by dividing the difference in receive timestamps by the serialization
delay. For these timestamp differences, we considered the first packet
subjected to the default action as well as the first packet matched to
any other action.

The lower subfigure depicts the observed processing delays over
time, shown as a percentile distribution in Fig. 5. Here, the generic
experiments were chosen due to their higher variations in the process-
ing delay when considering lower percentiles. The reasoning behind
this argument is as follows. A higher variation in the processing delay
allows for increased uniqueness of the observed latencies over time.
Consequently, making it easier to spot a possible correlation between
the two compared metrics. And, even though the NOHZ cases feature
more pronounced jitter, these events are significantly rarer than in the
generic instances.

The measurements in the figure suggest that no correlation exists be-
tween implementation, processing delay, or experiment time. Instead,
the impression arises that this behavior appertains to the DuT. For each
of the performed experiments, the described intermediate state was
observed 9500 times. The number of consecutive packets processed in
this state varied and amounted to about 1%, 45%, and 54% for one to
three packets, respectively. The P4 specification [38] demands that the
P4 program contains a default rule for every table. If no rule is present
in the source code, the compiler sets NoAction as its default rule.
While falling back to the default action is a sensible course of action
to take, seeing it used when switching between values can be quite
surprising. Such behavior raises security concerns. Active default rules
may leak traffic to unexpected destinations. This behavior needs to
be taken into consideration during updates involving several switches
that may otherwise receive or transmit traffic to or from unexpected
destinations and sources. There are two strategies to mitigate the
concerns: (1) Updating a table’s default action via P4Runtime, is a po-
tential mitigation strategy. Following the specification [26], updating

H. Stubbe et al.

the default entry is permitted if the default action is not marked as
constant by the program. (2) Another strategy is possible for tables that
use longest prefix, ternary, or range matches. Adding a new wildcard
entry, which matches all potential keys, can supersede the default
action. In this case, only the new wildcard entry will be used instead
of the original default action.

Fewer surprises were observed when looking at the control plane
delays (deontrol in Fig. 2) caused by the different implementations.
Therefore, we timestamped the reception of a P4Runtime message and
its acknowledgment sent after the PARuntime message was processed.
We calculated d qn0 by subtracting the first from the second times-
tamp. deoniro1 does not include the time required by the DuT to apply
the modification, i.e., dg,, in Fig. 2. We observe similar behavior
for d.oniror and dgy. This similarity is likely rooted in the fact that
each implementation’s underlying function call blocks until the modify
instruction is performed.

6. Reproducibility

We consider reproducibility a key element of research, enabling
others to verify and extend our results. Therefore, we publish our
experiment artifacts [39] on Zenodo [40], ensuring long-term public
availability of our artifacts. The artifacts contain the scripts to create
and process the measurement data, including the sample measurement
data used for Figs. 4, 5, and 6 in this paper. The experiments were
conducted using pos and its methodology [41]. This methodology
ensures that experiments can be reproduced automatically on a testbed
implementing this methodology.

7. Conclusion

P4-programmable hardware data planes support bandwidths in the
Tbit/s-range. The control planes need to keep up with these novel
data planes to ensure an effective operation of these high-performance
data plane devices. Different flavors of control plane implementations
are available: vendor-specific implementations tailored to a specific P4
data plane and the standardized, vendor-independent P4ARuntime-based
implementations. In this work, we investigated three implementations
of P4 control planes for P4 hardware data planes: two vendor-specific
and a generic P4Runtime-based implementation. Besides the type of
implementation, we investigate the Linux environment hosting the
control plane implementations.

Our measurements indicate that a conscious implementation choice
is required to optimize performance. To improve latency and jitter of
the control plane, the client implementations were ported to DPDK. Out
of the three investigated applications, the C++-based vendor-specific
API offered significantly lower latency and jitter. We observed differ-
ences of several hundred microseconds for P4Runtime-enabled data
planes. Hoping to further improve latency and jitter, experiments were
repeated on a low-latency Linux kernel. The results of this implementa-
tion were mixed: simple packet forwarding was rewarded with reduced
jitter, complex packet processing was penalized with higher jitter. We
identified the complex architectures of the control plane applications
and their dependency on threading as the root cause. We further
noticed the reappearance of default rules during table modifications.
From this, we conclude that the modify implementation on this device
is not implemented in an atomic fashion. The length of the default
rule period varies, but in our experiments, it took up to about 200 ns.
This kind of non-atomic behavior during table modifications must be
considered when rolling out updates across entire networks.

Our results show that high-performance data planes can profit from
an optimized control plane. Latency and jitter can significantly impact
the traffic processed by the data plane. The P4ARuntime implementation
should be further improved to achieve performance similar to the
vendor-specific implementations. Porting the control plane application
to DPDK can help accelerate packet reception and reduce latency
and jitter. Initial results indicate that performance could be further
improved when switching to a simpler application architecture that can
benefit from the low-latency features of the Linux kernel.

52

Computer Communications 225 (2024) 44-53
CRediT authorship contribution statement

Henning Stubbe: Writing — review & editing, Writing — original
draft, Visualization, Validation, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Sebastian Gallenmiiller:
Writing — review & editing, Writing — original draft, Methodology,
Investigation, Conceptualization. Manuel Simon: Writing — review &
editing, Writing — original draft, Methodology, Investigation, Concep-
tualization. Eric Hauser: Writing — review & editing, Writing — original
draft, Methodology, Investigation, Conceptualization. Dominik Scholz:
Writing - review & editing, Writing — original draft, Methodology,
Conceptualization. Georg Carle: Writing — review & editing, Writ-
ing — original draft, Supervision, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme as part of the projects
SLICES-SC and SLICES-PP (grant agreement no. 101008468 and
101079774). Additionally, we received funding from the Bavarian
Ministry of Economic Affairs, Regional Development and Energy as
part of the project 6G Future Lab Bavaria. Moreover, this work is
partially funded by the German Federal Ministry of Education and
Research (BMBF) under the projects 6G-life (16KISK002) and 6G-ANNA
(16KISK107) as well as the German Research Foundation (HyperNIC,
grant no. CA595/13-1).

References

[1] H. Stubbe, S. Gallenmiiller, M. Simon, E. Hauser, D. Scholz, G. Carle, Keep-
ing up to date with P4Runtime: An analysis of data plane updates on P4
switches, in: IFIP Networking Conference, IFIP Networking 2023, Barcelona,
Spain, June 12-15, 2023, IEEE, 2023, pp. 1-9, http://dx.doi.org/10.23919/
IFIPNETWORKING57963.2023.10186439.

X. Ge, F. Yang, Q. Han, Distributed networked control systems: A brief overview,
Inform. Sci. 380 (2017) 117-131, http://dx.doi.org/10.1016/j.ins.2015.07.047.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: enabling innovation in campus networks,
SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69-74, http://dx.doi.org/10.
1145/1355734.1355746.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3) (2014)
87-95, http://dx.doi.org/10.1145/2656877.2656890.

S. Raza, Y. Zhu, C. Chuah, Graceful network state migrations, IEEE/ACM
Trans. Netw. 19 (4) (2011) 1097-1110, http://dx.doi.org/10.1109/TNET.2010.
2097604.

J.P. John, E. Katz-Bassett, A. Krishnamurthy, T.E. Anderson, A. Venkataramani,
Consensus Routing: The Internet as a Distributed System. (Best Paper), in:
USENIX NSDI ’08, USENIX Association, 2008, pp. 351-364.

L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, O. Bonaventure, Seamless
Network-Wide IGP Migrations, SIGCOMM ’11, ACM, 2011, pp. 314-325, http:
//dx.doi.org/10.1145/2018436.2018473.

K. Foerster, S. Schmid, S. Vissicchio, Survey of consistent software-defined
network updates, IEEE Commun. Surv. Tutorials 21 (2) (2019) 1435-1461,
http://dx.doi.org/10.1109/COMST.2018.2876749.

Intel, Intel® Tofino™ series programmable ethernet switch ASIC, 2022,
URL https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html. (Accessed 30 June 2024).

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

http://dx.doi.org/10.23919/IFIPNETWORKING57963.2023.10186439
http://dx.doi.org/10.23919/IFIPNETWORKING57963.2023.10186439
http://dx.doi.org/10.23919/IFIPNETWORKING57963.2023.10186439
http://dx.doi.org/10.1016/j.ins.2015.07.047
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1109/TNET.2010.2097604
http://dx.doi.org/10.1109/TNET.2010.2097604
http://dx.doi.org/10.1109/TNET.2010.2097604
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb6
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb6
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb6
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb6
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb6
http://dx.doi.org/10.1145/2018436.2018473
http://dx.doi.org/10.1145/2018436.2018473
http://dx.doi.org/10.1145/2018436.2018473
http://dx.doi.org/10.1109/COMST.2018.2876749
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

H. Stubbe et al.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Cisco, Cisco catalyst 9400 series architecture white paper, 2022, URL
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9400-
series-switches/nb-06-cat9400-architecture-cte-en.html. (Accessed 30 June
2024).

Arista, Arista 7050X switch architecture (‘a day in the life of a packet’), 2020,
URL https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_
Architecture.pdf. (Accessed 30 June 2024).

G. Kurio, L. Wu, I. Wu, V. Vijayanath, Open compute project wedge 400C
design specification V1.1, 2022, URL https://www.opencompute.org/documents/
wedge400c-ocp-specification-2-pdf. (Accessed 30 June 2024).

H. Frazier, The 802.3z gigabit ethernet standard, IEEE Netw. 12 (3) (1998) 6-7,
http://dx.doi.org/10.1109/65.690946.

IEEE Standard for Information technology - Local and Metropolitan Area Net-
works - Part 3: CSMA/CD Access Method and Physical Layer Specifications
- Media Access Control (MAC) Parameters, Physical Layer, and Management
Parameters for 10 Gb/s Operation, IEEE Std 802.3ae-2002 (Amendment to IEEE
Std 802.3-2002), 2002, pp. 1-544, http://dx.doi.org/10.1109/IEEESTD.2002.
94131.

IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and
Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic
Cables, IEEE Std 802.3bm-2015, 2015, pp. 1-172, http://dx.doi.org/10.1109/
IEEESTD.2015.7069180.

IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters,
Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s
Operation, IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as Amended
by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-
2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE
802.3-2015/Cor1-2017), 2017, pp. 1-372, http://dx.doi.org/10.1109/IEEESTD.
2017.8207825.

IEEE P802.3dj 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s ethernet task
Force Public Area Channel Data Area, 2023, URL https://www.ieee802.0rg/3/
dj/public/index.html. (Accessed 30 June 2024).

R. Huggahalli, R.R. Iyer, S. Tetrick, Direct cache access for high bandwidth
network 1/0, in: 32st International Symposium on Computer Architecture (ISCA
2005), 4-8 June 2005, Madison, Wisconsin, USA, IEEE Computer Society, 2005,
pp. 50-59, http://dx.doi.org/10.1109/ISCA.2005.23.

S. Gallenmiiller, J. Naab, 1. Adam, G. Carle, 5G URLLC: A case study
on low-latency intrusion prevention, IEEE Commun. Mag. 58 (10) (2020)
35-41, http://dx.doi.org/10.1109/MCOM.001.2000467, Conference Name: IEEE
Communications Magazine.

R. Neugebauer, G. Antichi, J.F. Zazo, Y. Audzevich, S. Lépez-Buedo, A.W. Moore,
Understanding PCle Performance for End Host Networking, SIGCOMM ’18,
Association for Computing Machinery, New York, NY, USA, 2018, pp. 327-341,
http://dx.doi.org/10.1145/3230543.3230560.

S. Gallenmiiller, F. Wiedner, J. Naab, G. Carle, How low can you go? A limbo
dance for low-latency network functions, J. Netw. Syst. Manage. 31 (20) (2022)
http://dx.doi.org/10.1007/s10922-022-09710-3.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Walker, Abstractions for
Network Update, SIGCOMM ’12, ACM, 2012, pp. 323-334, http://dx.doi.org/10.
1145/2342356.2342427.

X. Jin, H.H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, R.
Wattenhofer, Dynamic scheduling of network updates, in: F.E. Bustamante, Y.C.
Hu, A. Krishnamurthy, S. Ratnasamy (Eds.), ACM SIGCOMM 2014 Conference,
SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, ACM, 2014, pp. 539-550,
http://dx.doi.org/10.1145/2619239.2626307.

53

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Computer Communications 225 (2024) 44-53

R. Oudin, G. Antichi, C. Rotsos, A.W. Moore, S. Uhlig, OFLOPS-SUME and the
art of switch characterization, IEEE J. Sel. Areas Commun. 36 (12) (2018)
2612-2620, http://dx.doi.org/10.1109/JSAC.2018.2871235.

J.H. Han, P. Mundkur, C. Rotsos, G. Antichi, N.H. Dave, A.W. Moore, P.G.
Neumann, Blueswitch: Enabling Provably Consistent Configuration of Network
Switches, ANCS ’15, IEEE Computer Society, 2015, pp. 17-27, http://dx.doi.
org/10.1109/ANCS.2015.7110117.

P4runtime specification, 2020, URL https://p4.org/p4runtime/spec/v1.3.0/
P4Runtime-Spec.html.

gRPC Authors, gRPC a high performance, open source universal RPC framework,
2023, URL https://grpc.io. (Accessed 29 December 2023).

C.H. Song, X.Z. Khooi, D.M. Divakaran, M.C. Chan, Revisiting application offloads
on programmable switches, in: IFIP Networking Conference, IFIP Networking
2022, Catania, Italy, June 13-16, 2022, IEEE, 2022, pp. 1-9, http://dx.doi.org/
10.23919/IFIPNetworking55013.2022.9829799.

C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan, L. Liu,
Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, C. Guo, Tiara: A Scalable and
Efficient Hardware Acceleration Architecture for Stateful Layer-4 Load Balancing,
in: USENIX NSDI ’22, USENIX Association, 2022, pp. 1345-1358.

J. Salim, When NAPI comes to town, in: Proceedings of Linux 2005 Conference,
UK, 2005.

DPDK Project, Data plane development kit, 2022, URL https://www.dpdk.org/.
(Accessed 30 June 2024).

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, G. Carle, MoonGen: A
Scriptable High-Speed Packet Generator, IMC ’15, Association for Computing
Machinery, New York, NY, USA, 2015, pp. 275-287, http://dx.doi.org/10.1145/
2815675.2815692.

F. Reghenzani, G. Massari, W. Fornaciari, The real-time linux kernel: A survey
on preempt_rt, ACM Comput. Surv. 52 (1) (2019) 18:1-18:36, http://dx.doi.org/
10.1145/3297714.

NO_HZ: Reducing scheduling-clock ticks, 2023, URL https://www.kernel.org/
doc/Documentation/timers/NO_HZ.txt. (Accessed 30 June 2024).

STORDIS GmbH, Technical specifications of the stordis BF2556X-1T-AlF,
2019, URL https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_
BF2556X-1T-A1F.pdf.

endace, Datasheet endace DAG 10x4-S, 2023, URL https://web.archive.org/
web/20180905043442/https://www.endace.com/dag-10x4-s-datasheet.pdf. (Ac-
cessed 30 June 2024).

G. Tene, HdrHistogram: A high dynamic range histogram, 2023, URL http:
//hdrhistogram.org/. (Accessed 30 June 2024).

P4_16 language specification, 2022, URL https://p4.org/p4-spec/docs/P4-16-v-
1.2.3.html.

H. Stubbe, S. Gallenmiiller, D. Scholz, M. Simon, E. Hauser, G. Carle,
Measurement artifacts, 2023, http://dx.doi.org/10.5281/zenodo.7871012.
European Organization For Nuclear Research, OpenAIRE, Zenodo, 2013, http://
dx.doi.org/10.25495/7GXK-RD71, URL https://www.zenodo.org/. (Accessed 30
June 2024).

S. Gallenmiiller, D. Scholz, H. Stubbe, G. Carle, The Pos Framework: a
Methodology and Toolchain for Reproducible Network Experiments, CONEXT 21,
Association for Computing Machinery, New York, NY, USA, 2021, pp. 259-266,
http://dx.doi.org/10.1145/3485983.3494841.

https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9400-series-switches/nb-06-cat9400-architecture-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9400-series-switches/nb-06-cat9400-architecture-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9400-series-switches/nb-06-cat9400-architecture-cte-en.html
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_7050X_Switch_Architecture.pdf
https://www.opencompute.org/documents/wedge400c-ocp-specification-2-pdf
https://www.opencompute.org/documents/wedge400c-ocp-specification-2-pdf
https://www.opencompute.org/documents/wedge400c-ocp-specification-2-pdf
http://dx.doi.org/10.1109/65.690946
http://dx.doi.org/10.1109/IEEESTD.2002.94131
http://dx.doi.org/10.1109/IEEESTD.2002.94131
http://dx.doi.org/10.1109/IEEESTD.2002.94131
http://dx.doi.org/10.1109/IEEESTD.2015.7069180
http://dx.doi.org/10.1109/IEEESTD.2015.7069180
http://dx.doi.org/10.1109/IEEESTD.2015.7069180
http://dx.doi.org/10.1109/IEEESTD.2017.8207825
http://dx.doi.org/10.1109/IEEESTD.2017.8207825
http://dx.doi.org/10.1109/IEEESTD.2017.8207825
https://www.ieee802.org/3/dj/public/index.html
https://www.ieee802.org/3/dj/public/index.html
https://www.ieee802.org/3/dj/public/index.html
http://dx.doi.org/10.1109/ISCA.2005.23
http://dx.doi.org/10.1109/MCOM.001.2000467
http://dx.doi.org/10.1145/3230543.3230560
http://dx.doi.org/10.1007/s10922-022-09710-3
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1145/2619239.2626307
http://dx.doi.org/10.1109/JSAC.2018.2871235
http://dx.doi.org/10.1109/ANCS.2015.7110117
http://dx.doi.org/10.1109/ANCS.2015.7110117
http://dx.doi.org/10.1109/ANCS.2015.7110117
https://p4.org/p4runtime/spec/v1.3.0/P4Runtime-Spec.html
https://p4.org/p4runtime/spec/v1.3.0/P4Runtime-Spec.html
https://p4.org/p4runtime/spec/v1.3.0/P4Runtime-Spec.html
https://grpc.io
http://dx.doi.org/10.23919/IFIPNetworking55013.2022.9829799
http://dx.doi.org/10.23919/IFIPNetworking55013.2022.9829799
http://dx.doi.org/10.23919/IFIPNetworking55013.2022.9829799
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb29
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb30
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb30
http://refhub.elsevier.com/S0140-3664(24)00230-5/sb30
https://www.dpdk.org/
http://dx.doi.org/10.1145/2815675.2815692
http://dx.doi.org/10.1145/2815675.2815692
http://dx.doi.org/10.1145/2815675.2815692
http://dx.doi.org/10.1145/3297714
http://dx.doi.org/10.1145/3297714
http://dx.doi.org/10.1145/3297714
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf
https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf
https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf
https://web.archive.org/web/20180905043442/https://www.endace.com/dag-10x4-s-datasheet.pdf
https://web.archive.org/web/20180905043442/https://www.endace.com/dag-10x4-s-datasheet.pdf
https://web.archive.org/web/20180905043442/https://www.endace.com/dag-10x4-s-datasheet.pdf
http://hdrhistogram.org/
http://hdrhistogram.org/
http://hdrhistogram.org/
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
http://dx.doi.org/10.5281/zenodo.7871012
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
https://www.zenodo.org/
http://dx.doi.org/10.1145/3485983.3494841

	Exploring Data Plane Updates on P4 Switches with P4Runtime
	Introduction
	Background
	Router Architecture
	Case Study: Control Plane Latency

	Related Work
	Measurement Methodology
	Scenario Description—A Table Update
	Measurement Challenges
	Solution
	Setup
	Experiment Description
	Control Plane Applications

	Evaluation
	Table Modification Delay—Packet Reception
	Table Modification Delay—Packet Processing
	Table Modification Behavior

	Reproducibility
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

