2023 IEEE Globecom Workshops (GC Wkshps) | 979-8-3503-7021-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/GCWKSHPS58843.2023.10465054

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

Multi-Cluster Orchestration of SG Experimental
Deployments in Kubernetes over High-Speed Fabric

Ilias Syrigos*, Nikos Makris*', and Thanasis Korakis*'
*Dept. of Electrical and Computer Engineering, University of Thessaly, Greece
tCentre for Research and Technology Hellas, CERTH, Greece
Email: ilsirigo@uth.gr, nimakris@uth.gr, korakis @uth.gr

Abstract—Network Functions Virtualization has been a key
enabler for the wide adoption of cloud-native functions for
workloads. Well-established orchestration frameworks, such as
Kubernetes, optimize network operation to meet the networking
requirements of deployed workloads, while providing a flexible
API for fine-grained control throughout the lifecycle of the
workload. As a result, these tools can be used effectively to
provide access to distributed 5G experimental facilities, even
across continents. However, resource clusters may belong to
distinct administrative authorities; therefore, cluster integration
must occur by exposing only the necessary information and
services. In this paper, we suggest employing SUSE Rancher for
managing multi-cluster Kubernetes deployments and utilize the
Submariner framework in order to securely export services and
establish connectivity across clusters. We evaluate the efficacy of
such integrated framework and its various configurations over
a high-speed networking fabric (up to 25 Gbps) connecting the
various clusters and enabling 5G and beyond experimentation.

Index Terms—Kubernetes, multi-cluster, orchestration, 5G,
testbeds

I. INTRODUCTION

Fifth-generation networks (5G) have completely trans-
formed our digital world interactions and communications.
They are the primary enablers for applications requiring higher
data rates and ultra-low latency, including autonomous ve-
hicles, augmented reality, and smart cities. SG represents a
paradigm shift from traditional wireless networking by soft-
warizing and virtualizing network functions (SDN/NFV) and
multiplexing them with a cloud-native approach of container-
ized microservices to deliver fine-grained control and man-
agement. This approach enables network operators to reduce
operational costs, enhance system flexibility and scalability,
and simultaneously enable the development and provisioning
of services and applications with variable throughput and
latency requirements. Utilizing softwarization and virtual-
ization/containerization, the distributed deployment of a 5G
network is now possible, where the cloud-native 5G Core
Network can be instantiated in a cloud environment with
abundant resources, while the 5G RAN can be deployed at the
network’s edge to enable real-time, low-latency applications.

Parallel research initiatives from standardization consortia,
organizations, industry, and academia have begun to address

The research leading to these results has received funding from the
European Horizon 2020 Programme for research, technological development
and demonstration under Grant Agreement Number No 101008468 (H2020
SLICES-SC). The European Union and its agencies are not liable or otherwise
responsible for the contents of this document; its content reflects the view of
its authors only.

979-8-3503-7021-8/23/$31.00 ©2023 IEEE

the limitations of 5G and evolve it into the 6th generation
(6G). To this end, research infrastructures and testbeds play
an important role by providing experimental platforms that
enable realistic evaluation of concepts, protocols, and services
to researchers from academia and industry. In addition, they
offer a controlled environment in which researchers can man-
age the deployment of their experiments and fine-tune their
parameters in a standardized, well-defined, and softwarized
manner, thereby ensuring reproducibility.

To facilitate truly large-scale, realistic experimentation,
however, researchers require a variety of frequently highly
heterogeneous high-capacity resources. The availability of
such resources in research infrastructures exists on a global
scale, but the problem is that these infrastructures are more
isolated silos of resources than a unified research space. This
results in a fragmented view of the total available resources
and hinders the deployment of fully distributed large-scale
applications.

To address this challenge, it is necessary to integrate the
various research facilities into a single one that provides an en-
vironment for the seamless and simple access to heterogeneous
experimental resources from various sites and locations around
the globe. In such a situation, a central hub is required for the
management and orchestration of resources and experiments,
while direct access to individual sites for the same operations
is also required.

For such an integration, virtualization and containerization
of network functions (Virtual/Container Network Functions)
and services will be essential to realizing its potential, because
they will decouple the network from its physical infrastructure
and heterogeneity. Additionally, the adoption of orchestration
frameworks such as Kubernetes [1] is essential for assisting in
bridging the gaps in integration between the various research
sites.

In this paper, we design and implement a fully-fledged
multi-domain orchestration framework for providing central-
ized orchestration and fine-grained control of CNFs, VNFs
and services over Kubernetes-based resource clusters, thereby
facilitating the discovery and interconnection of services ex-
isting in distinct clusters. We employ an experimentally driven
approach in order to determine the overhead and tradeoffs of
the adopted solution, using isolated clusters in the NITOS
testbed, the Greek node of the SLICES-RI platform [2].
We assess this setup by quantifying the performance impact
of such a distributed deployment and discuss the different

1764

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

deployment options and limitations that they present.

The remaining sections of this paper are structured as
follows: The section II provides a summary of relevant con-
cepts and background information. Section III describes in
detail each of our contributions while presenting the overall
architecture of our developed framework. In section IV, a
proof-of-concept use case deployed on multiple clusters is
used to evaluate the framework. Section V, concludes the
paper by reviewing our proposed scheme and findings and
identifying future research directions.

II. BACKGROUND AND MOTIVATION

In this section, we present some background concepts
regarding virtualization and containerization, as well as their
application in the cloud-native approach of the 5G Service-
Based Architecture (SBA), where control plane functionality
is provided by an interconnected chain of Network Functions
(NFs).

A. Virtualization and Containerization

By enabling the creation of virtual instances of hardware
platforms, storage, and network resources, virtualization en-
ables the decoupling of physical resources from the underlying
hardware. It enables the concurrent execution of multiple such
instances, usually virtual machines (VMs), on commercially
available hardware (server, server cluster), while providing iso-
lation and security to software operating on them. In addition,
it offers cloud providers flexibility and considerably improves
the utilization of their hardware resources by enabling the
optimal placement and migration of virtual machines, which
contributes to meeting SLA requirements. Another advantage
of virtualization is the increased availability of services, as
hardware failures can be quickly recovered by migrating or
replicating VMs to another physical machine. All of the afore-
mentioned advantages have resulted in a significant reduction
of CAPEX and OPEX for infrastructure providers, and have
played a significant role in the development of cloud tech-
nologies that provide on-demand services and applications by
sharing a pool of computing, storage, and network resources.

Containerization is a well-established technology that ser-
vice providers and developers are swiftly adopting. Container-
ization is fundamentally a lightweight form of virtualization,
wherein a container is a self-contained software package with
its dependencies. The major difference between a container
and a virtual machine lies at the level of abstraction. Con-
tainers are software abstractions of the operating system,
whereas virtual machines are software abstractions of the
hardware platform. The kernel space of the operating system
is shared by containers running on the same host machine,
despite the fact that their processes are entirely isolated and
protected. Containerization is gaining popularity because it
offers a significant advantage over virtual machines, namely
that containers are more lightweight and have less overhead
than VMs, which include a complete operating system stack
and are consequently much slower to boot. This provides
enhanced portability and scalability, efficient load balancing,
rapid deployment, and overall improved resource utilization

and efficiency. For all these benefits, the NFV industry and
mobile operators are starting to favor container-based plat-
forms and Containerized Network Functions (CNFs) over the
conventional VM-based NFV platforms and the traditional
Virtualized Network Functions (VNFs).

B. Network Disaggregation

At the same time, 5G networks have introduced a number
of innovations in terms of network deployment and overall
operator flexibility, enabled by the adoption of the concept of
disaggregation. 5G introduces two forms of disaggregation by
implementing: 1) the functional split of the base station units
to simpler elements (e.g. CU/DU/RU split), with the CU/DU
components being able to be executed at the cloud/edge; and
2) the Control/User-plane disagreggation across the differ-
ent elements at the stack (e.g. CU disaggregation to CU-U
and CU-P communicating over the El interface, or the O-
RAN interfaces for programming the network using xApps).
Through the adoption of Service-Based Architecture and the
execution of discrete network functions, 5G Core Network
components are also being disaggregated. As a result, cellular
network operators can greatly benefit from the virtualization of
their components, which enables their network to be executed
in a cloud-native manner, thereby reducing their capital and
operational costs and making the deployment of the network
more flexible.

C. Workload Orchestration

The Management and Orchestration (MANO) of these vir-
tualized functions is of utmost importance to the network
operator, as it ensures the proper chaining of services, the
establishment of appropriate datapaths among them, and their
seamless operation during their lifecycle. There are several
options for the orchestration of services, depending on their
operation and the environment for which they are intended.
The Kubernetes (K8s) ecosystem is one of the most prominent
frameworks for orchestration. K8s automates the instantiation,
scaling, and management of container-based applications and
microservices, while specialized plugins facilitate the network
establishment and service exposure within the cluster. K8s
claims to be one of the most successful open-source or-
chestration platforms compatible with all modern container
technologies at present. K8s provides integrated monitoring
functionalities for monitoring and restoring application health,
efficient resource allocation and storage organization, auto-
mated load-balancing and replication of high-traffic contain-
ers, management of application runtime state and control of
deployments and updates, enabling the efficient use of physical
resources [3], [4].

Although K8s provides a well-structured API for deploying
workloads, it can only manage operations within a single
cluster. There is no organized off-the-shelf solution for inte-
grating other clusters (possibly under different administration
domains) into a single centrally managed facility. In this work,
we progress beyond these limitations and employ a fully-
fledged solution that enables the cross-domain orchestration
of several K8s clusters that are administered by distinct

1765

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

F—
Generic Compute Infrastruciure
(servers/experimentation nodes)

R

User gets access through central Hub or local
cluster

Submariner provides routing and service
| exposure across clusters

7 Distributed
Cluster N

Generic Compute Infrastructure
(servers/experimentation nodes)

Fig. 1: The overall under-study architecture: we consider geographically distributed clusters that operate independently. On top,
the framework adds a management layer through a central hub, and exposes network functions and services to other clusters.

administration authorities. We develop the functionality for se-
curely exposing services across integrated clusters and conduct
experiments with workloads across the integrated resource
continuum. In the following section, we describe the overall
architecture and components that enable this functionality.

III. IMPLEMENTATION DESIGN

In this section, we provide the design and implementa-
tion of our framework that facilitates the deployment and
orchestration of the 5G Core Network and the 5G RAN
across multiple distributed research infrastructures (multiple
domains) by exposing CNFs and providing transparent inter-
cluster connectivity.

A. Overall Architecture

Figure 1 is a visual representation of the overall architecture
under consideration. It is comprised of several independent
research infrastructures, displayed as nodes, each of which
represents a resource island. A container management system
based on Kubernetes manages each cluster’s of resources
directly. On top of the clusters a central hub exists, where
a multi-domain orchestrator is deployed and directly inter-
faced with the individual Kubernetes-based clusters, enabling
the deployment and management of containerized workloads
across domains. The experimenters can login in from the
central hub to a graphical user interface that allows them to
inspect clusters and their worker nodes, deploy and configure
pods and deployments, monitor the status of infrastructure and
workloads, and define security and network policies. However,
the configuration is flexible in the sense that the experimenters
can potentially log in directly to the cluster management portal
of an individual node with the same credentials and deploy
their experimental workload locally.

Researchers can leverage such an architecture in order to
experiment with existing and develop new concepts on 5G net-
works disaggregation and slicing in a large-scale multi-domain
environment. Open-source implementations assist them, with
the OpenAirlnterfaceSG platform (OAI) [5] for the 5G RAN

and Core components, srSRAN for the RAN [6], and Open5GS
and free5SGC [7] for the Core being the most well-known
frameworks. Although all implementations support the major-
ity of functionalities, OAI has a larger user base and provides
additional features, such as disaggregation of RAN and support
for multiple SDR devices.

B. Multi-domain Orchestrator

The European Telecommunications Standards Institute’s
(ETSI) NFV architectural framework forms the basis for NFV
specification and management in 5G networks. Specifically,
the ETSI NFV MANO specification [8] defines the framework
under which VNFs are provisioned, deployed, configured,
and managed throughout their life-cycle. This framework is
comprised of three major functional blocks: a) the NFV
Orchestrator (NFVO), b) the VNF Manager (VNFM), and
c) the Virtualized Infrastructure Manager (VIM). Initially,
VNF management was primarily focused on virtual machine
handling, but CNF support has since been introduced. Several
compliant frameworks, such as OSM and ONAP [9], have been
developed to implement the NFV MANO architecture, but a
cloud-native approach is required to offer multi-domain or-
chestration support over existing containerized infrastructures
and provide a flexible and simple method for managing multi-
site experimentation.

To this end, we propose employing SUSE Rancher as the
orchestrating framework for VNFs and CNFs. Rancher is a
Kubernetes management tool that enables the deployment and
management of clusters on any provider or location, as well
as allowing the import of existing, distributed Kubernetes
clusters that operate in different regions, cloud providers,
or on-premises. It supports multiple flavors of Kubernetes,
including K8s, K3s, and RKE/RKE2, and one of its main
advantages is its centralized authentication and role-based ac-
cess control (RBAC), which enables administrators to manage
multiple clusters and their members from a central location.
Though it is primarily targeting the deployment of CNFs,
VNF deployment is also possible through extensions such as

1766

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

Rancher Server
Rancher Server

Rancher User Data Store

Rancher UL e
(. Authentication
CLIL or API Proxy '
LY Rancher

kubectl, APL
Kubernetes — Server
API ‘

—»

|

Cluster Cluster
Controller 1 Controller 2

Downstream User Downstream User
Cluster 1 Cluster 2

i @ j

Kubemetes provisioned Kubemetes provisioned
by Rancher Kubernetes. by Amazon Elastic
Engine Kubemetes Service:

| |

ll Amazon ll'
RKE Nodes l' Kubelet EKS Nodes Kubelet

Node Node

|

Fig. 2: Rancher architecture [11].

KubeVirt [10]. Deploying Rancher on a central hub to manage
multiple Kubernetes-based clusters across distributed regions
enables access to these clusters, management of their members
and nodes, management of their persistent volumes and stor-
age classes, management of their projects, namespaces, and
workloads, and deployment and configuration of monitoring,
logging, and alerting tools.

Figure 2 illustrates the high-level architecture of Rancher, in
which the majority of Rancher’s software components reside
on the Rancher server. These components coordinate to pro-
vide access to multiple downstream clusters. Before initiating
API calls to the master of the downstream Kubernetes cluster,
a Rancher user must first authenticate with the Rancher server,
and specifically with the Authentication Proxy, which adds the
proper Kubernetes impersonation payload. The communica-
tion between Rancher and Kubernetes clusters is performed
using a service account that identifies pod-running processes.
A Cluster Agent is deployed on each downstream cluster to
establish a tunnel with the dedicated Cluster Controller on the
Rancher server. The Cluster Agent connects to the Kubernetes
API of its cluster, manages workloads and pods, implements
global policy roles and bindings, and communicates with the
cluster controller regarding health status, events, and statistics.
The Cluster Controller is responsible for configuring access
control policies, monitoring events and resource changes, and
provisioning the downstream cluster.

Overall, we believe that Rancher is the best option for
managing containerized infrastructures with multiple clusters.
In comparison to other multi-cluster alternatives [12], such
as Kubefed [13], it offers advantages such as centralized
authentication and RBAC for downstream clusters, as well as
a superior graphical interface that facilitates user-friendliness.
Compared to a single cluster Kubernetes deployment consist-
ing of a master node on the central hub and worker nodes
located at the various sites, it provides autonomy at each site,

Broker accessible via K8s AP

VR

Public
Network

On-Prem K8s Cluster Public K8s Cluster + Broker

Fig. 3: Submariner network stitching among clusters [14].

ensuring availability even when the central hub is unavailable.

C. Multi-domain Network Stitching

Even though the multi-domain orchestrator provides the
ability to manage multiple containerized clusters deployed
on different sites, it is not sufficient to deploy a workflow,
or in our case, a 5G experimental network, across these
clusters. The missing piece is network stitching that given
multiple network subnets as input, will produce a single end-
to-end network as output. In this paper, we propose that
the Submariner framework (Fig. 3) [14] assumes the role of
network stitching module. Submariner is a sandbox project of
the Cloud Native Computing Foundation (CNCF) that offers
encrypted or unencrypted L3 cross-cluster connectivity, service
exporting and discovery across clusters, and support for the
interconnection of clusters with overlapping CIDRs.

Submariner consists of multiple components to ensure con-
nectivity between clusters. The first of these components is the
Gateway Engine, which is deployed in each cluster and which
primary function is to create tunnels to all other clusters. The
Gateway Engine supports three tunneling implementations: a)
Libreswan [15], an IPsec VPN protocol; b) WireGuard [16],
an additional VPN tunneling protocol; and c) unencrypted
tunnels via VXLAN. The second component is the Route
Agent, which is deployed on each node of each cluster and
is responsible for establishing VXLAN tunnels and routing
cross-cluster traffic from the node on which it resides to
the node that hosts the Gateway Engine, which will then
forward the traffic to the destination cluster. The Broker is
a singleton component of Submariner that is deployed on a
cluster whose Kubernetes API is accessible by all clusters;
therefore, the central hub node is its ideal location for the
architecture under consideration. Broker enables the Gateway
Engines to discover one another and stores metadata such as
the Service and Pod CIDRs for each cluster. It is a central
component that enables connectivity between clusters, yet its
availability is not always required because Gateway Engines
and Route Agents will continue to route traffic based on the
most recent information even if it is unavailable. Lighthouse
Agent and Lighthouse DNS Server facilitate Service Discov-
ery for Submariner. The Lighthouse Agent is deployed in
each cluster and, in coordination with the Broker, imports
every service exported by the other clusters. These imports
are utilized by the Lighthouse DNS Server to resolve DNS
requests received from the Kubernetes cluster’s configured
CoreDNS service. In the event that a service is deployed in

1767

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

Machine2Machine

K3s Single mmmm

Wireguard ===

1 Gbps Links (MTU:9000)

1000

Libreswan ===
VXL

AN ——

9

1=
15}

8

S
15}

~
=}
153

Throughput (Mbps)

6

=1

0

Machine2Machine =
K3s Single
Wireguard ===

10 Gbps Links (MTU:9000)

Libreswan ===
VXLAN

500

Throughput (Gbps)
CaNvwhOON®OD

TCP

UDP

i

SCTP TCP

UDP

SCTP

Transport Protocol

(a) Throughput results for 1 Gbps links.

Transport Protocol

(b) Throughput results for 10 Gbps links.

Throughput (Gbps)

o

0

Machine2Machine =

Libreswan ===
3s Single VXLAN —=1

Wireguard E===1
25 Gbps Links (MTU:9000)

H

Bmm O

UbP

SCTP

Transport Protocol

(c) Throughput results for 25 Gbps links.

Fig. 4: Throughput performance results under different settings.

multiple clusters, the Lighthouse DNS server prioritizes the
local cluster before selecting a remote cluster in a round-robin
fashion. Eventually, an important Submariner component is the
Globalnet Controller, which supports overlapping CIDRs in
clusters by establishing a virtual network with a global CIDR.

IV. EVALUATION

In this section, we discuss the evaluation results of our pro-
posed framework, which provides multi-domain connectivity
and orchestration and enables transparent deployment of 5G
experimental networks across distributed testbeds.

To evaluate our approach, we utilize the NITOS testbed
[17]. We employ two single-node clusters based on K3s that
are incorporated into a single Rancher instance, each of which
runs on a separate node. The specifications of each node are
identical, as shown in Table I. We measure and compare
the throughput and latency (RTT) obtained in the follow-
ing cases: a) when using directly the bare metal machines
(Machine2Machine), b) when both nodes are integrated in
a single K3s cluster (K3s single) that uses Flannel as its
default Container Network Interface (CNI), or ¢) when each
node is hosting a separate K3s cluster, and the deployed
services are exposed using Submariner, configured with the
three different tunneling options (Wireguard, Libreswan, and
VXLAN). Notably, the K3s clusters are deployed directly on
the bare metal servers and not over a virtualized Openstack
infrastructure, which is a common deployment method, be-
cause enabling VXLAN tunneling over the Openstack provider
network would require explicit configuration.

TABLE I: Configurations used in the experiments

Experiment Parameters Value

Processor

Memory

NIC (1 Gbps experiments)

NIC (10 & 25 Gbps experiments)
Operating System

Rancher Version

K3s Version

Submariner Version

Traffic Generator

Intel Core i7-11700K @ 3.60GHz

64GB

Realtek RTL8125 2.5Gbps Ethernet
Netronome Agilio CX25Gbps SFP28
Ubuntu 22.04 server (Linux Kernel v6.4.3)
v 273

v1.25.11 +k3sl

v0.15.2

iperf v.3.9

In order to provide a full overview of the performance

of the various connectivity options, we obtained the afore-
mentioned metrics for three different link speeds (1 Gbps,
10 Gbps, 25 Gbps) by configuring the NICs appropriately
and deactivating the auto-negotiation feature. The MTU of

the physical interface was set to 9000 bytes, and since both
Flannel and Submariner support auto-MTU configuration, all
established tunnels and interfaces were configured to account
for the tunneling overhead, with Wireguard being the only
exception that required manual configuration. Using iperf3 and
the three transport protocols TCP, UDP, and SCTP, throughput
was measured, while RTT was determined using ping. We
considered evaluating the SCTP protocol, as it is used for
signaling traffic transfer in 5G and beyond 5G networks.
Similarly, we evaluated the network’s latency, as it plays
a crucial role in serving uRLLC traffic across clusters. All
presented results display the average throughput and RTT
measurements as the average of 50 consecutive trials.

Figure 4 illustrates our results regarding the attained
throughput. When using bare metal servers or the Flannel CNI
in a single cluster configuration, the achieved TCP throughput
is very close to the maximum allowable transfer rate across
all experiment scenarios (1 Gbps, 10 Gbps, and 25 Gbps).
Comparing the Submariner tunneling options, we find that the
VXLAN cable driver is capable of achieving maximum speed,
which is close to the bare metal transferable rate. Wireguard
comes close to that value, being capable of achieving a
throughput of 22 Gbps. Libreswan is the cable driver with
the lowest performance, achieving a maximum of 12 Gbps in
the 25 Gbps experiments. In both 1 Gbps and 10 Gbps links,
all protocols reach their maximal throughput.

In the case of UDP transfers, where by default 4 KByte
buffer size is used, bare metal and single cluster can attain
speeds close to the 10 Gbps maximum rate. However, as the
underlying capacity is increased to 25 Gbps, UDP transfer
endures high losses, resulting in a maximum of 21 Gbps
for the bare metal case and 14.5 Gbps for the single cluster
case. Notably, in such high-speed networks, unlike UDP, TCP
benefits from the implementations of TCP segmentation and
reassembly offloading directly on the card, allowing it to
perform better in comparison. VXLAN outperforms the other
options in the evaluation of Submariner cable drivers, achiev-
ing throughput close to the single cluster case. Wireguard ap-
proaches the performance of VXLAN, obtaining a maximum
transferable rate of up to 12 Gbps, while Libreswan is the
solution with the worst performance, achieving a maximum
transferable rate of 9 Gbps.

As our final transport protocol, SCTP with a window size

1768

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE Globecom: Workshop on Communication and computing integrated networks and experimental future G platforms

Machine2Machine =
3s Single
Wireguard ===

Libreswan ===
VXLAN ——

RTT Measurements

1.8 !
B

14

Time (msecs)
I
—t—

—f—

I

0.8
06
04 -
0.2

1Gbps Links

1

10Gbps Links
Type of link

25Gbps Links

Fig. 5: RTT measurements for the different cable drivers.

of 4 MBytes is utilized. SCTP achieves a maximum transfer
rate of 4.5 Gbps for bare metal transfers, considerably lower
than TCP and UDP. When using a single stream for send-
ing/receiving, these rates reflect adjustments to the operation
of SCTP, increasing parameters such as the segment size and
the maximum surge traffic over the standard implementation.
SCTP appears to adapt transfer windows in a less reactive
manner than TCP, resulting in a markedly lower throughput.
Regarding the various Submariner tunneling options, the per-
formance of VXLAN and Wireguard are comparable. In 25
Gbps links, both cable drivers obtain lower throughput than
in 10 Gbps links, 2.7 Gbps and 3.6 Gbps, respectively, a
noteworthy observation. Regarding Libreswan, we were unable
to transmit SCTP-based traffic because support does not appear
to be enabled by default; consequently, the presented results
do not indicate any packet transmission.

Figure 5 illustrates the average RTT observed across all
configurations. Similar to the throughput results, the choice of
cable driver affects the overall measured RTT, with Wireguard
being the worst performing solution, as indicated by the
highest deviation from the average values.

In the overall comparison of the different cable drivers
for Submariner, VXLAN and Wireguard seem to be notably
outperforming Libreswan. Nevertheless, VXLAN does not
implement any encryption on top of the transferable traffic,
contrary to the other two solutions. The outcomes are consis-
tent with related benchmarking results [18], [19].

Additionally, the transmission of VXLAN traffic needs to
be enabled for cloud-based provisioning based on Openstack
or equivalent solutions. The two other cable drivers do not
require such configuration because they are transferred over
UDP in the case of Wireguard and TCP in the case of Li-
breswan. As a result, they can be simply implemented on any
cloud infrastructure without requiring further modifications.

solution can be applied as-is for the integration of Kubernetes-
based experimental research infrastructures via a central Hub.
As indicated by our findings, the selection of the cable driver
for the under-study Submariner framework is of the utmost
importance, significantly impacting the performance of the
workloads deployed on top. Based on the results we obtained,
the VXLAN cable driver appears to outperform the other
solutions, delivering performance as near as possible to that of
the bare metal case. Nonetheless, VXLAN does not provide
traffic encryption, hence it is not suitable for use in production-
grade environments. Therefore, the next best option is to
use the Wireguard driver, which offers encrypted tunnels and
comparable performance.

REFERENCES

[1] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.

[2] S. Fdida, N. Makris, T. Korakis, R. Bruno, A. Passarella, P. Andreou,
B. Belter, C. Crettaz, W. Dabbous, Y. Demchenko, and R. Knopp,
“SLICES, a scientific instrument for the networking community,” Com-
puter Communications, vol. 193, pp. 189-203, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366422002663

[3] I Syrigos, D. Kefalas, N. Makris, and T. Korakis, “EELAS: Energy Ef-
ficient and Latency Aware Scheduling of Cloud-Native ML Workloads,”
in 2023 15th International Conference on COMmunication Systems &
NETworkS (COMSNETS), 2023.

[4] I. Syrigos, N. Angelopoulos, and T. Korakis, “Optimization of Execution
for Machine Learning Applications in the Computing Continuum,” in
2022 IEEE Conference on Standards for Communications and Network-
ing (CSCN), 2022.

[5] F. Kaltenberger, G. d. Souza, R. Knopp, and H. Wang, “The OpenAirln-
terface 5G New Radio Implementation: Current Status and Roadmap,”
in WSA 2019; 23rd International ITG Workshop on Smart Antennas,
2019.

[6] srsran-project, “SRS,” 2023, [Online], https://github.com/srsran/srsran_
project.

[7]1 F. J. De Souza Neto, E. Amatucci, N. A. Nassif, and P. A. Mar-
ques Farias, “Analysis for Comparison of Framework for 5G Core Im-
plementation,” in 2021 International Conference on Information Science
and Communications Technologies (ICISCT), 2021.

[8] M. Ersue, “ETSI NFV management and orchestration-An overview,”
Presentation at the IETF, vol. 88, 2013.

[91 G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-

Perez, “Benchmarking open source NFV MANO systems: OSM

and ONAP,” Computer Communications, vol. 161, pp. 86-98, 2020.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0140366420305946

M. Amaral, “KubeVirt scale test by creating 400 VMISs on a single node,”

in Free and Open source Software Developers’ European Meeting, 2022.

SUSE, “Rancher,” 2023, [Online], https://www.rancher.com/.

L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma, “Multi-Cloud

Connectivity for Kubernetes in 5G Networks,” IEEE Communications

Magazine, vol. 59, no. 10, pp. 42-47, 2021.

F. Faticanti, D. Santoro, S. Cretti, and D. Siracusa, “An Application of

Kubernetes Cluster Federation in Fog Computing,” in 2021 24th Con-

ference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN), 2021.

[10]

[11]
[12]

[13]

[14] Linux CNCF, “Submariner,” 2023, [Online], https://submariner.io/.
In the case that SCTP traffic needs to be eXChanged between [15] Libreswan, “Libreswan - VPN software,” [Online], https://libreswan.org.
deployed workloads (e.g. for the case of control traffic for |1 Wireguard, “Wireguard - Fast, Modern, Secure VPN tunnel,” [Online],
the 5G/beyond 5G network), Libreswan fails to provide such https://www.wireguard.com/.

. . . . [17] N. Makris, C. Zarafetas, S. Kechagias, T. Korakis, I. Seskar, and L. Tas-
funCt.lona.hty‘ In overall, ereguard appears to be tl_le. Optlr.nal siulas, “Enabling open access to LTE network components; the NITOS
solution in terms of features and performance, attaining high testbed paradigm,” in Proceedings of the 2015 Ist IEEE Conference on
throughput over encrypted and secure tunnels. Network Softwarization (NetSoft), 2015.

[18] P. G. Kannan, B. Salisbury, P. Kodeswaran, and S. Sen, “Benchmarking
V. CONCLUSION tunnel and encryption methodologies in cloud environments,” arXiv
. . . preprint arXiv:2203.02142, 2022.
In this work, we employ an experimentally-driven approach [19] L. Osswald, M. Haeberle, and M. Menth, “Performance comparison of
to evaluate Kubernetes-based multi-cluster integration and se- VPN solutions,” 2020.
cure service exposure across different integrated clusters. The
1769

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 10:29:51 UTC from IEEE Xplore. Restrictions apply.

