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B S T R A C T

mulation has become a popular approach for the validation and evaluation of network research. It provides researchers with a contained, customizable, and
calable testing environment, which can be easily packaged and published for potential readers to reproduce their results. However, as the network components
re only virtual, emulation lacks the inherent realism of physical testbeds. In light of this, monitoring specific metrics of the emulated network has been proposed
s a solution to mitigate to some degree inaccuracies caused by emulation. While this is not difficult to implement in a single-machine setting (e.g. with M ininet),
onitoring is limited by the lack of time synchronization in scenarios where the emulation is distributed over multiple physical machines (e.g., Distrinet). In this

paper we tackle the case of packet delay monitoring, to which we propose a methodology for passively measuring one-way delays with underlying assumptions
about time synchronization, and round-trip delays otherwise. For an efficient implementation of our methodology, we propose an eBPF-based packet measurement
tool that performs better than current packet sniffers under emulation-specific assumptions. We implement and evaluate our system in an open testbed and show
that it can reach results within few microseconds of perfect accuracy and precision.
. Introduction

The design and engineering of new network protocols and archi-
ectures require rigorous functional testing and evaluation to finely
xamine their implementability and performance in practice. Network
mulators, such as Mininet [1], are becoming popular means to con-
uct network experimentation. These tools mimic the operation of
etwork hardware using software tools, on which they can run actual
pplication and operating system code. As such, they allow users to
reate and reproduce lightweight network testbeds on their computers
hrough an easy-to-use Python interface. As for computing-intensive
cenarios, when Mininet cannot emulate more than a certain number
f hosts and network hardware devices due to resource limitations
nherent to the physical machine intended to run it, several researchers
ave worked on distributed versions of Mininet, ones that let users
mulate large-scale networks over a geographically localized cluster
f multiple physical machines. Distrinet [2], Maxinet [3], and Mininet

Cluster Edition [4] are such iterations, some of which particularly focus
on reproducibility by natively allowing users to run their emulations
on public clouds such as Amazon’s AWS.

However, researchers have shown that network emulators do not al-
ways provide perfectly accurate results [5]. In fact, as they are designed
for running on everyday laptops, their emulation of multiple events
(e.g., running code in emulated hosts, switching and routing multiple
packets in parallel, etc.) is very limited by the available computing
and network resources [6]. This renders them practically unusable
for emulating latency-sensitive scenarios or those that require packet-
level precision. Researchers have thus proposed fidelity monitoring [7]
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E-mail address: houssam.elbouanani@inria.fr (H. ElBouanani).

as a way to achieve more accuracy and precision by appropriately
allocating computing and/or memory resources for emulated hosts and
by finely monitoring the network packets throughout their journeys
in the network. Essentially, as each packet at each hop of its path
will experience multiple amounts of delay (propagation, transmission,
queuing, switching, etc.), the experiment may be labeled ‘‘inaccurate’’
if an unacceptable fraction of the packets were not appropriately de-
layed on each of the emulated links. Even though other performance
metrics can be also monitored (e.g., bandwidth, queues’ sizes, etc.), the
fine-grained monitoring of packet delays can ensure very high-fidelity
emulation with good enough guarantee on accuracy, and can also be
used to monitor overall performance and infer information about other
metrics, especially the bandwidth and the queues’ sizes.

In practice, packet delay monitoring inevitably requires measuring
packets’ network delays between multiple nodes of the virtual network.
In a distributed setting, however, such virtual nodes can be hosted
at different physical machines, which generally do not have the same
perception of physical time even if geographically localized. Therefore,
implementing fidelity monitoring on a distributed network emulator
raises a complicated sub-problem: accurate passive delay measurement
between physical machines of a network. In this paper we focus at tackling
this problem in the particular context of distributed network emulation.
Specifically, we answer the following questions: how can one accurately
monitor packet delays in a distributed environment? and in particular,
how can one passively measure delays of packets exchanged between
physical machines in a cluster?

Our contributions in this work are manifold: we present a method-
ology to passively measure the one-way delay (OWD) of packets – with
ttps://doi.org/10.1016/j.comcom.2022.07.004
eceived 31 October 2021; Received in revised form 27 May 2022; Accepted 4 Jul
vailable online 18 July 2022
140-3664/© 2022 Elsevier B.V. All rights reserved.
y 2022

https://doi.org/10.1016/j.comcom.2022.07.004
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.07.004&domain=pdf
mailto:houssam.elbouanani@inria.fr
https://doi.org/10.1016/j.comcom.2022.07.004


H. ElBouanani, C. Barakat, W. Dabbous et al. Computer Communications 195 (2022) 40–48

r
t
i
s
t

c
i
b
a
v
T

I
t

𝑑

p
a
v

t
n
t
c
a
e
m
e

2
a
t
I
a
l
r
p
m

m
p
r
𝑃
𝐴
a
d
𝑡
e
a

an accuracy of up to mere microseconds – between physical machines
and/or virtual machines hosted on separate physical machines, to
be used for monitoring purposes in the context of distributed net-
work emulation. We further present an extension of our methodology
to the monitoring of the round-trip delay (RTD) in scenarios when
accurately measuring the OWD is not possible due to time synchro-
nization assumptions. We also introduce a non-intrusive and distributed
packet measurement tool based on the extended Berkeley Packet Filter
(eBPF) [8], which is highly compatible with network emulators. The
new packet measurement system is then evaluated on a real use case
to show that it can reach its objectives.

The remainder of this paper is organized as follows. In Section 2
we quickly present a background on delay measurement and time
synchronization. We then move on to lay the ground for our passive
delay measurement system in Section 3 with preliminary discussions
on packet identification and packet timestamping. In Sections 4 and
5 we introduce methods to passively and accurately measure one-way
and two-way delays respectively, of which we present a distributed
implementation. In Section 6 we benchmark our measurement tool
against standard packet sniffers, then we briefly evaluate our system
in Section 7, before concluding and discussing our current and future
work on high-fidelity distributed network emulation in Section 8.

2. Background

2.1. Delay measurement

Unlike the throughput which is a flow-level measure, the network
delay is a value that characterizes either an individual packet or a pair
of request–response packets. In general, the packet delay is the amount
of time needed for one or a pair of packets to travel from one point to
another in a path of one or multiple physical media and eventually one
or multiple intermediate networking nodes (switches, routers, proxies,
firewalls, etc.). From this general model, the network delay can be
precisely defined along three axes:

• one-way vs. round-trip: whether the delay is defined for single
packets (one-way delay), or pairs of packets in opposite directions
(round-trip delay);

• one-hop vs. end-to-end: whether the delay is defined on a single
transmission medium separating two layer 1 and above machines
(one-hop delay), or on a whole path separating two layer 4 and
above machines (end-to-end);

• application- vs. system- vs. hardware-level: whether the delay
is considered at the point in time when the application creates
the message, when the message is made into a network packet
and then into a system data structure, or when the transmission
hardware sends the packet as a stream of bytes.

For example, the classical definition [9] considers a one-hop,
hardware-level model of the one-way delay. In this definition, the OWD
of a packet 𝑃 between two machines 𝐴 and 𝐵 (which can be user ter-
minals, servers, routers, switches, etc.) separated by a communication
medium (wired or wireless) is the duration of (absolute) time between
the instant when 𝐴 sent the first bit of 𝑃 , and the instant when 𝐵
eceived the last bit of 𝑃 . While this can be deemed a pure model of
he network delay, as it does not involve any system-level latency, it
s very hard to accurately measure. In fact, it inevitably requires using
pecialized network hardware to timestamp packets in order to measure
heir delays.

In this paper, as we are mostly concerned with measurement, we
onsider a more relaxed model of the one-way network delay: we define
t as the one-hop, system-level delay. This delay has the advantage of
eing measurable using simple software tools without the need for any
dditional hardware, and thus it can be easily measured in scenarios in-
olving virtual and/or emulated machines and networking equipment.
his delay can be decomposed into three contributing terms:
 r
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• The system (or queuing) delay: which mainly consists of the
amount of time that the packet will spend in the system queues
waiting to be transmitted;

• The transmission delay: the amount of time needed for the trans-
mitting hardware (NIC, router interface, switch port, etc.) to write
the packet onto the physical medium. This delay depends on
the writing speed of the hardware, the transmission speed of the
medium (also known as its bandwidth or capacity), as well as the
size of the packet; and

• The propagation delay: the length of time needed for the signal to
travel from 𝐴’s transmission hardware to 𝐵’s receiving hardware.
It is mainly characterized by the propagation speed of the signal
and the dimensions of the medium and does not depend on the
size of the packet.

n the case of wired media, this decomposition can be summarized into
he following formula:

(𝑃 ) = 𝑙
𝑣
+

𝑆𝑄(𝑃 )

𝐵
+

𝑆𝑃
𝐵

, (1)

where 𝑑(𝑃 ) is the total one-way delay of a packet 𝑃 of size 𝑆𝑃 between
two machines separated by a link of length 𝑙, velocity factor 𝑣, and
bandwidth 𝐵; and where 𝑆𝑄(𝑃 ) is the size of the queue (including
remaining bits of the head-of-line packet) at the instant when 𝑃 arrived.

The measurement tool we will present can also be used to measure
multiple-hop (and end-to-end) system-level one-way delay.

Note that in cases where 𝐴 and/or 𝐵 are virtual hosts, switches, or
routers separated by a physical network (e.g., 𝐴 is a virtual machine
hosted in a physical machine, and 𝐵, a virtual switch hosted in a
different physical machine), the delay needs to be measured between
the virtual NICs of 𝐴 and/or 𝐵, not the physical NICs of their hosting
hysical machines. Thus when virtualization is involved, the delay of
packet also accounts for the system delay between the virtual node’s

irtual NIC and the hosting machine’s physical NIC.
Accurately measuring packets’ OWDs and successfully decomposing

hem into their three components can give useful insights about the
etwork: from the transmission delays of multiple packets one can infer
he bandwidth of the medium; and a long system delay can signify
ongestion or saturation of computing resources. However, this is not
lways an easy task, and researchers have proposed many techniques to
stimate the OWDs of probe packets up to varying degrees of accuracy,
ost of which require proper hardware (GPS systems, specialized NICs,

tc.) [10].
An easier value to measure is the round-trip delay (RTD). The RFC

681 [11] defines it for a pair of request–response packets 𝑃 and 𝑄
s the duration of (absolute) time between the instant when 𝐴 sent
he first bit of 𝑃 , and the instant when 𝐴 received the last bit of 𝑄.
t is thus a round-trip, end-to-end, hardware-level model of the delay,
nd is in fact equal to the sum of the individual one-way hardware-
evel delays of packets 𝑃 and 𝑄, and the processing delay between the
eception of the request packet by 𝐵 and its sending of the response
acket. Certainly, the information on the individual OWDs is lost when
easuring the RTD.

This definition of the RTD can also be relaxed to make it measure-
ent-friendly. In this paper, we rather define it from a system-level
oint of view, as well as extend its definition from simple request–
esponse packets, to almost any pair of packets. For a couple of packets

and 𝑄 such that 𝑃 was sent from 𝐴 before 𝑄 was received by
(see below), we define the round-trip, one-hop, system-level delay

s simply the sum of their individual one-way, one-hop, system-level
elays, 𝑡𝐵𝑃 −𝑡𝐴𝑃 and 𝑡𝐴𝑄−𝑡𝐵𝑄, without accounting for the ‘‘processing’’ time
𝐵
𝑄− 𝑡𝐵𝑃 by 𝐵 between the reception of 𝑃 and the sending of 𝑄. The time
lapsed between 𝑡𝐵𝑃 and 𝑡𝐵𝑄 is not relevant in the general case since 𝑃
nd 𝑄 do not need necessarily to be related packets (unlike ICMP echo

equest–response, TCP SYN-ACK, etc.). Again, the measurement tool we
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will present can also be used to measure the round-trip, multiple-hop,
system-level delay.

𝐴 𝐵
𝑡𝐴𝑃

𝑡𝐵𝑃

𝑃

𝑡𝐵𝑄
𝑡𝐴𝑄

𝑄

The use of ICMP echo probes is the de facto active method for
easuring RTDs [12,13]. It works by simply sending a probe ‘‘echo

equest’’ ICMP packet and waiting for the destination to answer with
n equal size ‘‘echo response’’ ICMP packet. The source timestamps the
nstant when the request packet is sent and the instant when the re-
ponse packet is received, and reports the round-trip time (RTT) as the
ifference between the two. It accurately measures the round-trip, end-
o-end, application-level delay with no need for time synchronization,
nd thus can be used in all cases without relying on external hardware.
ther more powerful tools1,2 can be used to send upper-layers probes

UDP, TCP, or application-level protocols).

.2. Clock synchronization

One-way delay measurement is intricately tied to the problem of
lock synchronization. Without specialized hardware to measure net-
ork delays, relying on software- or operating system-level mechanisms

nevitably requires some degree of synchronization between clocks that
ught to timestamp probe packets (or in the case of passive mea-
urement, data packets) [14]. The problem particularly arises because
he time dissimilarity between the clocks of different machines (called
lock offset) changes over time. This is due to differences between the
lock frequencies (called clock skew) which are sensitive to physical
henomena (such as hardware heating) that also change over time [15].
his problem has been extensively studied in the scientific litera-
ure, and numerous protocols based on different sets of assumptions
ave been proposed to continuously resynchronize clocks of machines
onnected by LANs or WANs.

The Network Time Protocol (NTP) is the most used solution for
lock synchronization [16]. It organizes machines into a tree-like hi-
rarchy, where the root node is the primary server which is generally
onnected to a highly reliable source of time (e.g., an atomic clock)
nd which will propagate its time to other nodes of the hierarchy
hrough protocol messages; other nodes synchronize their clocks to
he root server and eventually propagate the time to nodes in lesser
evels of the hierarchy. The process reiterates as clocks naturally drift
rom each other. At the convergence of the algorithm, each node
ill be synchronized to its server with a precision on the order of

he network jitter. Thus, in an Ethernet LAN, NTP can theoretically
uarantee precision down to 100 or even 10 μs, provided it is given
ong enough time to converge.

As applications in distributed systems have become reliant on finer
evels of time synchronization, a more powerful protocol was proposed:
he Precision Time Protocol (PTP), also known as IEEE 1588 [17].
ust like NTP, PTP organizes nodes into a hierarchy of ‘‘masters’’ and
‘slaves’’ (where a node can be both a master and a slave) and uses
rotocol messages to exchange time information between nodes of the
ierarchy. But unlike NTP, which can be implemented on any device
ith a Network Interface Card (NIC), PTP requires special NICs with

1 hping3: https://linux.die.net/man/8/hping3.
2 tcpping: http://www.vdberg.org/~richard/tcpping.html.
42
integrated time clocks. This allows high-resolution synchronization
by relying on the NIC clocks to timestamp protocol messages, thus
avoiding all delays caused by software and operating system-level
processing.

In [18], the authors show that with proper configuration of NTP
and PTP software in a local Ethernet network, it is possible to achieve
precision on the order of 10 μs with NTP, and on the order of 100
ns with PTP, without incurring much overhead on the network. In
fact, they show that by synchronizing clocks every 8 s with NTP,
the total overhead of protocol messages is 23 B/s per client and the
one of computing resources is negligible; and by using PTP, the total
network overhead is 186 B/s per client, and the one of computing is
also negligible. In our work and in settings where time synchronization
is needed, we will use their findings to configure our testbed.

2.3. Packet monitoring

Packet timestamping is another inevitable requirement for passive
packet delay measurement. Both end hosts need to record the in-
stants each packet was seen by their NICs, and send that information
to compute the delay from the individual timestamps. And as with
clock synchronization, there are specialized hardware that can tap
into NICs and extract information from data packets with minimal
interference on the traffic. This solution, although most efficient in
terms of performance, is not suitable for two main reasons:

• Firstly, it requires physical access to the machine on which the
tap must be installed. This is especially restrictive in our con-
text of network research where the user might be running her
experiments on a remote grid or cloud; and

• Secondly, it cannot work in situations with virtualization as pack-
ets must be timestamped at the virtual NIC level. It is also
particularly ineffective when system-level traffic control mecha-
nisms are in place to add delay or bandwidth to physical or virtual
links.

Thus, any packet timestamping tool needs to be implementable in
virtual NICs and be compatible with traffic control mechanisms. To this
end, using traffic sniffers (e.g., libpcap3) is the most straightforward
solution. These tools simply capture packets as they go through the
(physical or virtual) NICs for monitoring and analysis purposes. How-
ever, their intrusiveness in high-speed networks needs to be mitigated
by intelligent sampling. They are also not naturally compatible with
traffic control, as they capture outgoing traffic after being shaped, but
this too can be mitigated by system-level packet redirection.

Another solution is to leverage kernel tracers and the recent ad-
vances in kernel programming. The eBPF is one such solution that
allows users to run their code in kernel space through a secure and
contained virtual machine with its own registers, memory space, and
helper routines. More precisely, it allows users to attach pieces of
code to certain kernel functions. Its use cases include monitoring and
troubleshooting kernel operation, and high-performance packet pro-
cessing (filtering, routing, etc.). It can also be integrated within the
Linux Traffic Control suite [19] to perform powerful and flexible packet
classification and traffic shaping with minimal overhead. We will use
it in our work to implement a basic but efficient timestamping tool for
passive delay measurements.

3. Preliminaries

3.1. Testbed

All of the following testing has been performed on the open testbed
R2lab.4 The platform includes a cluster of machines that are connected

3 libpcap: https://www.tcpdump.org/.
4 R2lab Anechoic Chamber: https://r2lab.inria.fr/.

https://linux.die.net/man/8/hping3
http://www.vdberg.org/~richard/tcpping.html
https://www.tcpdump.org/
https://r2lab.inria.fr/
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through Gigabit Ethernet wires and store-and-forward switches. In our
tests, machines (equipped with a CPU Intel Core i7-2600 processor and
8 GB of RAM) are running a Ubuntu 18.04 Linux distribution over a
4.15.0 kernel.

To evaluate how our delay measurement methodology behaves in
different network settings, we leverage Linux Traffic Control [19],
which is a standard tool used by network emulators to simulate links of
different properties (bandwidth, propagation delay, packet loss, packet
duplication, etc.). In parallel, we use ping, hping3, and tcpping as active
round-trip, end-to-end, application-level delay measurement tools to
provide reference performance metrics to compare against. These tools
allow for controlled probe sizes and sending rates, and will thus also
serve as packet generators throughout our experimentation. We will
also use netsniff-ng’s trafgen5 to customize packet generation when it is
necessary. As for timestamping, we will use an eBPF program to capture
and timestamp incoming or outgoing packets, and also the libpcap Linux
utility for comparison. The collected data is then analyzed by a Python
program. We provide scripts6 to reproduce all our results.

3.2. Packet identification

Identifying packets is necessary for passive delay measurement. In
order to measure any type of delay, timestamps at the source and
destination hosts have to be matched to compute the delay. Ideally,
the hosts can simply identify packets by their order, i.e. the first packet
sent from a source 𝐴 to a destination 𝐵 corresponds to the first packet
received at the destination 𝐵 from the source 𝐴. But as packets can
be lost or arrive unordered due to several reasons, especially in cases
of multiple-hop or end-to-end delay measurement, more sophisticated
mechanisms have to be implemented. Another straightforward solution
is to tag all packets, either by a unique packet ID, or even directly by
adding the packet timestamp to its header at the source. However, this
requires unnecessary modifications to the operating system’s network
module, and can incur non-negligible network overhead at scale.

In our context of distributed network emulation, all packets are
encapsulated in UDP datagrams as soon as they leave the emulated host
(Distrinet uses VXLAN while Mininet Cluster and Maxinet use GRE).
We can therefore safely make the assumption that all packets are IPv4
packets, and for each flow of packets sent from a certain source to a
certain destination, use the native ID field of IPv4 as identification tag.
Unfortunately, this still has two major limitations: the ID field in IPv4
headers is shared between all fragments of a long packet and is encoded
on 16 bits only which can lead to collisions. The first limitation can be
managed by considering the pair (ID, Fragment Offset) as identification
tag; the second limitation is trickier since packets with the same ID from
the same source can arrive unordered. However this generally does not
happen very often, but to make such assumption, we must ensure that
packets take less time to get to their destination than it takes for their
source to circle through the range of possible packet IDs. Formally, the
assumption holds when 𝛥 < 216𝜏, where 𝛥 is an upper bound on the
network delay, and 𝜏 is the average interarrival time of packets (equal
to the average packet size over the bandwidth). It is generally the case
because longer links (i.e. larger propagation delay) correlate with lower
bandwidth (i.e. larger interarrival time). And even in our testbed with
high bandwidth, low delay, and small packets, this condition holds as
216𝜏 = 30 ms and 𝛥 < 1 ms.

Thus in our delay measurement system, all packets are identified by
a hash of the (Source Address, Destination Address, Packet ID, Fragment
Offset) fields from their IPv4 header.

5 netsniff-ng: http://netsniff-ng.org/.
6 See https://github.com/helllb/delay.
43
3.3. Workflow

The idea is simply to intercept and timestamp, by each machine and
at each of its NICs, all sent packets as late as possible, and all received
packets as soon as possible. This information can then be extracted and
used to compute packet delays.

More specifically, the system we propose for the measurement and
estimation of delay is built up from three main components.

3.3.1. Packet loggers
This component is a program written in eBPF specification and

which therefore runs in kernel space. Its goal is to capture and log
information about sampled packets (Fig. 1(a)). It can be further split
into two parts:

• One part of the program, in charge of outgoing packets, is plugged
as a k-probe into the qdisc_enqueue routine in the TC egress
queue of all probed interfaces in the machine. It runs its in-
structions whenever a packet is sent from the network stack for
queuing, and logs general and enqueuing information about the
packet: its ID, a timestamp of its transmission, and its size;

• A second part of the program, in charge of incoming packets, is
plugged into the TC ingress queue of all emulated interfaces. It
runs its instructions whenever a packet was received and can log
its ID and reception timestamp.

3.3.2. Local monitoring agents
This component is a user space program that runs on each physical

machine and whose goal is to receive the logs from the packets loggers
and compile them into structured tables that can later be used for
analysis (Fig. 1(b)). There are two possible solutions to achieve this:

• Either the eBPF program logs all the information in files in
persistent storage, then at the end of the monitoring period the
monitoring agent gathers the files, parses the information out, and
finally compiles it into structured tables; or

• The eBPF program sends the information by batches (of hundreds
or thousands of packets) to the monitoring agent via user space-
to-kernel space communication protocols (e.g. Linux Netlink).
Alternatively eBPF also offers an interface for shared memory
between eBPF programs and user space applications. The mon-
itoring agent then compiles the packet information online.

n our current implementation, where we do not see a specific advan-
age to online monitoring, we will adopt the first solution.

.3.3. A collector/analyzer
This component is the brain of the system. Its job is to collect

nd analyze packet information compiled by the monitoring agents
Fig. 1(c)). It is logically unique and achieves its goal in three steps:

• First is the collection of data from monitoring agents;
• Then the individual tables received from the monitoring agents

are cross-examined to match information about packets
distributed over multiple tables. For instance, a table from one
monitoring agent (and therefore from one machine of the cluster
in the case of distributed emulation) can contain the sending
timestamp of a packet, and another table from a different mon-
itoring agent can contain the reception timestamp of the same
packet. The output of this step is a unique large table where each
entry corresponds to a packet and is uniquely identified by its ID,
and which contains all information about it;

• Finally packets from the table are paired together according
to a pairing rule and their joined RTD is measured (from the
logged timestamps) and estimated (from other information such
as packet sizes, queue lengths, etc.). These two values are then
compared for all considered pairs of packets and an overall judge-
ment about the emulation can be made.

http://netsniff-ng.org/
https://github.com/helllb/delay
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The design we propose for the system is distributed but very hier-
rchical. It is distributed in that at the lower levels, the packet loggers
nd the local monitoring agents have many independent instances: each
irtual interface runs a replica of the packet logger, and each machine
hat hosts part of the emulated network runs a local replica of the
onitoring agent. The architecture is hierarchical in the sense that

he collector/analyzer communicates with all the monitoring agents
f the infrastructure, and each monitoring agent communicates with
he packet loggers of the virtual interfaces. The advantages of such
rganization are mainly twofold: first is that it centralizes most of
he intelligence and keeps the packet information logging part as
ightweight as possible to not impact the normal operation of the
mulated network and of the hosting system; second is that it perfectly
ntegrates into distributed emulators’ architectures, which also involve
leader/workers architecture.

. Passive OWD measurement

In this section we study the extent to which it is possible to passively
easure the one-hop and end-to-end OWD, i.e., the delay of data
ackets exchanged between a pair of machines from the testbed. From
he packet dumps generated by the monitoring agents in accordance
ith the previously described workflow, we measure the OWDs of
ackets using the method described in Algorithm 1.

However, without proper time synchronization, it is practically
mpossible to accurately measure the OWD between two machines with
ifferent clocks. Consider for example the plots in Fig. 2. We show the
WDs of generated ICMP packets measured by our method with no
lock synchronization for a large number of ICMP packets sent with 1 a

s interval. We can clearly see how the two machines’ clocks drift over t

44
Data: Packet dumps from A and B: dump_A, dump_B
Result: Arrays of (packet_ID, owd) pairs
initialize arrays OWD_AB and OWD_BA;
foreach (packet_ID, timestamp_A) in dump_A[outgoing] do

lookup matching packet_ID in dump_B[incoming] with the
closest timestamp_B;

compute owd := | timestamp_B - timestamp_A | ;
add (packet_ID, owd) to OWD_AB;

end
foreach (packet_ID, timestamp_B) in dump_B[outgoing] do

lookup matching packet_ID in dump_A[incoming] with the
closest timestamp_B;

compute owd := | timestamp_A - timestamp_B | ;
add (packet_ID, owd) to OWD_BA;

end
Algorithm 1: Passive OWD measurement algorithm

ime, how this drift affects the measurement of the OWD, and how it is
ifficult to predict it as it itself changes over time. In general, the clock
kew depends on uncontrollable physical phenomena (e.g., hardware
eating) which cause clock offset between the machines that changes
n a non-linear fashion. Note also how the clocks largely drift over

relatively short period of time (17 ms in a 100 seconds-long run),
aking the noise caused by the clock offset hide all the information

rom the actual network delay.
Nevertheless, running NTP on the testbed almost perfectly solves the

roblem. At the convergence of the NTP process for clock synchroniza-
ion and frequency stabilization, the clock offset and skew are almost
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Fig. 2. Measured OWD between two machines before clock synchronization.

Fig. 3. Measured OWD between two machines after clock synchronization.

eutralized and our method starts reporting good results. We can see
this in Fig. 3, where we report on the results of our method after NTP
has stabilized. We can notice how at convergence of NTP, the standard
deviation of the measured OWD is less than 10 μs.

5. Passive RTD measurement

The OWD measurement method gives accurate results only if the
end hosts’ clocks are highly synchronized. While this is not impossible
in practice thanks to NTP, it requires that the machines be in a local
network with reasonably low delay and jitter values to be able to reach
high-resolution time synchronization. Furthermore, the NTP algorithm
can take long time to converge. In our setting, the convergence of
NTP was observed two hours after NTP had started. This makes OWD
measurement difficult and inflexible. In this section we propose a new
method to passively measure the RTD that does not require such strong
assumptions.

The method for passively measuring the RTD and OWD follows
a similar approach: a program that captures and timestamps packets
between the NIC and the upper layers is installed on the machines,
then the packet dumps are sent to a collector which is in charge of
computing the RTDs from the information in the packets (namely their
IDs) and their timestamps. In the case of the RTD, for each pair of

𝐴
machines 𝐴 and 𝐵, and for each packet 𝑃 sent from 𝐴 at time 𝑡𝑃 (in

45
𝐴’s clock) and received on 𝐵 at time 𝑡𝐵𝑃 (in 𝐵’s clock), and 𝑄 sent by
𝐵 at time 𝑡𝐵𝑄 (in 𝐵’s clock) and received on 𝐴 at time 𝑡𝐴𝑄 (in 𝐴’s clock),

such that 𝑡𝐴𝑄 > 𝑡𝐴𝑃 , the collector will report the RTD of packets 𝑃 and 𝑄
as:

𝑅𝑇𝐷(𝑃 ,𝑄) = (𝑡𝐴𝑄 − 𝑡𝐴𝑃 ) − (𝑡𝐵𝑄 − 𝑡𝐵𝑃 ).

Data: Packet dumps from A and B: dump_A, dump_B
Result: Array of (packet1_ID, packet2_ID, rtd) tuples
initialize array RTD;
compute arrays OWD_AB and OWD_BA;
foreach (packet1_ID, owd1) in OWD_AB do

lookup first (packet2_ID, owd2) in OWD_BA;
if timestamps of packet1 and packet2 are close enough then

compute rtd := owd1 + owd2;
add (packet1_ID, packet2_ID, rtd) to RTD;

end
end
Algorithm 2: Passive RTD measurement algorithm.

Similar to the previous passive OWD measurement method, this
does not always give perfectly accurate estimations of the RTD. In
fact, while it does eliminate any inaccuracy due to constant clock drift
between the two machines, (i.e., the clock drift at time 𝑡 = 0) it is still
vulnerable to its variation. In fact, the longer the time interval between
the two packets 𝑃 and 𝑄, the more the clocks might have drifted during
that interval, and the larger the error that will be induced. Thus, in
practice, the collector should only stick to pairs of packets sent and
received within a small enough time interval 𝜏 so that the error caused
by clock drifts on the estimation of RTD is no larger than a tolerance
value 𝛿. This ensures that whenever 𝑃 and 𝑄 are such that 𝑡𝐴𝑄 − 𝑡𝐴𝑃 ≤ 𝜏,

e have:

𝑅𝑇𝐷(𝑃 ,𝑄) − 𝑅𝑇𝐷(𝑃 ,𝑄)| ≤ 𝛿.

Note that when NTP is active, it will periodically correct the clocks
hich could cause sudden drifting that can affect the accuracy of the
ethod. However, as NTP is limited to one resynchronization every 8 s,

he error is insignificant.
To evaluate this passive RTD measurement method, we conduct the

ame experiments as earlier, where we passively measure the delays
f generated packets. However, to provide a baseline to compare our
ethod against, we use the ping tool to generate ICMP echo packets

nd measure their round-trip, application-level, end-to-end delay. Fig. 4
hows how the RTDs measured by our method, in the absence of time
ynchronization by NTP, compare to the RTT reported by ping. Since

time synchronization – or rather time asynchronization – does not
impact this RTD measurement method, we can safely give explanations
as to the difference between the two measured values:

• Firstly and most importantly, the two methods (active measure-
ment with ping vs. our passive RTD measurement method) do not
exactly measure the same thing. As mentioned earlier, the former
measures the delay between emission of echo request packets and
reception of their corresponding echo response packets, which
includes the processing time at the destination. The latter only
attempts to measure the network delay without accounting for
system-added delays when possible, which makes it more accu-
rate in our context of passive measurement of network delay;
and

• Secondly, as our measurement solution runs in kernel space in-
stead of user space, it does not suffer from any delay variation
caused by random process scheduling and user space-to-kernel
space communications.
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Fig. 4. ping RTT and Passively measured RTD.

. Other measurement tools

In the previous sections we have used our methodology with an
BPF-based packet logger. Its main strength compared to standard
acket sniffing tools (such as the Linux libpcap library used by tcpdump
nd wireshark) is in its flexibility. In effect, as eBPF allows users to

run code in kernel space, through kernel routines, and in parallel with
kernel operations, much more can be achieved beyond simple times-
tamping of packets. For instance, and unlike with libpcap, it is possible
to get information about the context surrounding the passage of each
packet (e.g., NIC, system, or socket queues lengths) and correlate it with
its delay for better analysis.

A second advantage of using eBPF for timestamping is that it is
perfectly compatible with Linux Traffic Control (tc). In fact, we have
hosen in our testbed to timestamp packets as they pass through the
c subsystem: our timestamping program is run each time tc runs its
disc_enqueue routine, unlike libpcap that captures and timestamps
ackets when they pass through the network device (see Fig. 5). This
hoice is not arbitrary as in the context of network emulation, emula-
ors use tc to configure link parameters such as network delay, which
annot be captured by a measurement program if the packets are not
imestamped before any emulated delay is added. To see this, consider
ig. 6 that plots the passively measured RTD using both our eBPF packet
ogger and libpcap as timestamping tools, in the same testbed as before
ut with an added 1 ms of delay in both ways. We can clearly see how
ibpcap only measures the propagation delay of the physical medium
around 170 μs) and not the emulated delay (2 ms), unlike what ping
nd our eBPF-based method report.

Having said that, one can mitigate this issue with libpcap by creating
virtual network device to intercept all packets before they go through

c (see Fig. 7). The downside is that this solution will add system
elay and jitter to the packets that will be accounted for in their delay
easurements. Fig. 8 shows this: while the measured RTD using libpcap

s close to what our eBPF program measures (sum of the physical and
he emulated delays), the complexity of the setup adds delay (up to
0 μs), and jitter (12 μs) to the packets.

. Use cases

In addition to measuring network delays for latency-centered per-
ormance evaluation, our passive delay measurement methodology can
e used to indirectly measure and/or estimate other network variables.
n this section we focus on the bandwidth (or capacity), and provide
wo examples of how our measurement methodology can be used to
nfer links bandwidths.
46
Fig. 5. Implementation with eBPF and libpcap.

Fig. 6. ping RTT and passively measured RTD with emulated delay.

Fig. 7. Measurement system with eBPF and libpcap: modified setup.

7.1. Testbed

For the following experiments, we emulate a simple network con-
sisting of two hosts connected by three cascading switches (Fig. 9).
This scenario is emulated using Distrinet in a single node of the R2Lab
cluster, which is equipped with a CPU Intel Core i7-2600 processor
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Fig. 8. ping RTT and passively measured RTD: modified setup.

Fig. 9. Emulated testbed for bandwidth estimations. Each link is a full duplex wired
ink of bandwidth 𝐵 and propagation delay 𝑑.

nd 8 GB of RAM, and runs a Ubuntu 18.04 Linux distribution (ker-
el v4.15.0) with basic functionalities and no particular application
unning in the background. Each host then generates a flow of random-
ized packets to the other. No other traffic runs between the two
mulated hosts.

.2. One-hop link bandwidth

As stated earlier, the round-trip, one-hop, system-level delay on a
ired link is equal to the sum of its propagation delay along the link,

ts transmission delay by the hardware and the medium, and its waiting
ime in the queue, according to the formula:

(𝑃 ) = 𝑙
𝑣
+

𝑆𝑄(𝑃 )

𝐵
+

𝑆𝑃
𝐵

, (2)

When enough variables are known, this formula can be used for the
estimation of the bandwidth 𝐵. In fact, according to the method fa-
mously described by the authors in [20], by generating probe packets
of varying sizes and then measuring their delays, it is possible to
infer the bandwidths of each link along the path. However, thanks to
our passive measurement methodology, it is possible to achieve this
without injecting packets into the network but rather only from the
passively measured delays of data packets.

Consider a wired network link connecting two (physical or virtual)
interfaces 𝐴 and 𝐵. For each packet 𝑃 going from 𝐴 to 𝐵, and each
packet 𝑄 going from 𝐵 to 𝐴, their round-trip delay is equal to:

𝑅𝑇𝐷(𝑃 ,𝑄) = 2 ⋅ 𝑙
𝑣
+

𝑆𝑄(𝑃 )

𝐵1
+

𝑆𝑄(𝑄)

𝐵2
+

𝑆𝑃
𝐵1

+
𝑆𝑄

𝐵2
,

where 𝐵1 and 𝐵2 are the bandwidths in both directions of the link. Thus
or packets that are not queued, the round-trip delay is a simple linear
unction of their sizes.
 a
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Fig. 10. Transmission speed estimation from passive measurement of RTD. Each data
point corresponds to the RTD measurement (y-axis) of a pair of packets of a certain total
size (x-axis); the orange lines plot the above formula using the estimated transmission
speed. Clockwise from top-left: Link (1), Link (2), Link (3), and Link (4).

In the above described testbed, we use the measurements collected
at each end of the links to estimate their bandwidths based on the
previous formula. We use a simple linear regression model to fit all RTD
measurements against packet sizes (Fig. 10). With just few hundred
pairs of passively collected packets, we obtain good enough estimations
of bandwidths: 439.434 Mbps for Link (1); 9.907 Mbps for Link (2);
129.793 Mbps for Link (3); and 111.329 Mbps for Link (4).7 The
small inaccuracy of these estimations is due to the imperfection of the
emulator (which adds small processing delay to emulated packets) and
the measurement tools. These imperfections can be seen in Fig. 10
where they manifest as small stationary noise added to all packets,
which causes a constant drift to the measured delay (captured as an
intercept by the linear regression algorithm) and as deviations around
the regression line. The estimation accuracy can be made arbitrarily
better, provided enough measurements are collected. In general, higher
bandwidths cause lower transmission delays, which require more mea-
surements to be distinguished from added noise and captured by the
linear regression algorithm.

7.3. End-to-end bottleneck capacity

Another known method to estimate network bandwidth is packet
pair [21]. It consists in sending pairs of packets back-to-back while
timestamping them both at the source and at the destination, which
are generally end-user machines and/or servers, and measuring their
spacing difference. Intuitively, two packets sent back-to-back will get
spaced along the path each time they cross a link of lower bandwidth.
As such, the difference in their timestamps at the destination will be
a function of their sizes and of the transmission speed of the slowest
link, i.e. the bottleneck capacity of the path. This method has been
extensively studied in the scientific literature. In this paper, however,
we only implement it in a passive measurement framework using only
the tools we have proposed.

Consider two packets 𝑃 and 𝑄 sent from one host 𝐴 at instants 𝑡𝐴𝑃
and 𝑡𝐴𝑄 respectively, and received by a host 𝐵 at instants 𝑡𝐵𝑃 and 𝑡𝐵𝑄
respectively, through a path with 𝑛 links of bandwidths 𝐵1, 𝐵2,… , 𝐵𝑛. If
ll the links of the path are fast enough, the packets will not be further
paced by transmission delay, i.e. 𝑡𝐵𝑄− 𝑡𝐵𝑃 ≈ 𝑡𝐴𝑄− 𝑡𝐴𝑃 . However, each slow
ink 𝑖 will try to impose its transmission delay on the packet spacing,
nd we would have 𝑡𝐵𝑄 − 𝑡𝐵𝑃 ≥ 𝑆𝑄

𝐵𝑖
where 𝑆𝑄 is the size of packet 𝑄. In

7 Datasets and a Python notebook to reproduce these results can be found
t https://github.com/distrinet-hifi/delaymon/.

https://github.com/distrinet-hifi/delaymon/
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Fig. 11. Estimated bandwidth from different pairs of packets.

act, the authors in [21] argue that if the packets are sent with small
nough interpacket time, then their spacing at the destination will be
qual to the transmission delay of the second packet on the slowest
ink, according to the formula:

𝐵
𝑄 − 𝑡𝐵𝑃 = max(𝑡𝐴𝑄 − 𝑡𝐴𝑃 ,

𝑆𝑄

𝐵𝑙
),

where 𝑙 is the bottleneck link of the path.
In the same scenario as above, we leverage the timestamps collected

at the end hosts to apply this method. For each pair of packets sent
and received successively, we compute their spacing 𝑡𝐴𝑄 − 𝑡𝐴𝑃 at the
source and 𝑡𝐵𝑄 − 𝑡𝐵𝑃 at the destination, and use it to estimate the
bottleneck bandwidth according to the previous formula. Then from the
estimations gotten from each pair of packet we select the one with the
maximum likelihood. Fig. 11 shows the results, from which we obtain
an estimated bottleneck bandwidth between 9.997 and 10.013 Mbps.

8. Conclusion

Fine-grained fidelity monitoring is essential for reinforcing realism
in network emulation. It relies on the accurate measurement of the
emulated packet delay, which in distributed scenarios is limited by
clock offsets of the machines within the cluster. We have presented in
this paper a new methodology for passively measuring delay of packets
exchanged between physical machines and/or virtual machines hosted
by separate physical hosts. We have implemented this methodology
within a delay monitoring system that relies on the extended Berkeley
Packet Filter’s (eBPF) network and packet processing capabilities to ex-
tract information and timestamps from packets in an accurate, precise,
and low-overhead manner, and which naturally integrates alongside
existing network emulation tools. This system allows the passive mea-
surement of packets’ one-way delays when assumptions about time
synchronization can be made, and their two-way delays otherwise. In
both cases, it can reach microsecond-levels of accuracy and precision,
which are necessary in our goal of monitoring data packets for fidelity
purposes in distributed emulation scenarios.

Our current and future work is centered around the design of a
lightweight fidelity monitoring system that uses the presented delay
measurement methodology in large-scale emulated networks in dis-
tributed testbeds, to ensure that emulated experiments are carried
out accurately. We will also import tools from statistics and signal
processing to eliminate noise from passive delay measurements, in
order to drop further assumptions about time synchronization.
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