
Performance Evaluation 166 (2024) 102442 

A
0
(

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Performance evaluation of containers for low-latency packet
processing in virtualized network environments
Florian Wiedner ∗, Max Helm, Alexander Daichendt, Jonas Andre, Georg Carle
Technical University of Munich, School of Computation, Information, and Technology, Department of Computer Engineering, Boltzmannstr. 3,
Garching by Munich, 85748, Bavaria, Germany

A R T I C L E I N F O

Keywords:
Low-latency
Container
Virtualization
Packet processing

A B S T R A C T

Packet processing in current network scenarios faces complex challenges due to the increasing
prevalence of requirements such as low latency, high reliability, and resource sharing. Vir-
tualization is a potential solution to mitigate these challenges by enabling resource sharing
and on-demand provisioning; however, ensuring high reliability and ultra-low latency remains
a key challenge. Since bare-metal systems are often impractical because of high cost and
space usage, and the overhead of virtual machines (VMs) is substantial, we evaluate the
utilization of containers as a potential lightweight solution for low-latency packet processing.
Herein, we discuss the benefits and drawbacks and encourage container environments in low-
latency packet processing when the degree of isolation of customer data is adequate and bare
metal systems are unaffordable. Our results demonstrate that containers exhibit similar latency
performance with more predictable tail-latency behavior than bare metal packet processing.
Moreover, deciding which mainboard architecture to use, especially the cache division, is
equally vital as containers are prone to higher latencies on more shared caches between cores
especially when other optimizations cannot be used. We show that this has a higher impact on
latencies within containers than on bare metal or VMs, resulting in the selection of hardware
architectures following optimizations as a critical challenge. Furthermore, the results reveal that
the virtualization overhead does not impact tail latencies.

1. Introduction

Low-latency packet processing applications are driving improvements in areas such as autonomous driving or real-time industrial
automation. These applications frequently utilize specialized hardware to fulfill the demands of these applications. However,
specialized machines create scalability challenges, affecting the cost per service rate when real-time requirements are in play. The
5G ultra-reliable low-latency communications (URLLC) profile provides a framework for systems that require ultra-low latency,
defined as <1ms end-to-end latency and 99.999th percentile of traffic must be within this limit [1]. Using dedicated hardware to
run applications for such purposes is not an economically efficient solution for the customer or provider.

Therefore, a solution that offers on-demand provisioning and resource sharing for low-latency network services is required.
Virtualization of computer systems is one such solution requiring only general-purpose hardware. However, using virtual machines
(VMs) with a complete operating system (OS) results in significant performance, memory, and disk space usage overhead.
Gallenmüller et al. [2] compared packet processing between bare metal and VMs on commodity hardware and reported that tuning

∗ Corresponding author.
E-mail addresses: wiedner@net.in.tum.de (F. Wiedner), helm@net.in.tum.de (M. Helm), daichend@net.in.tum.de (A. Daichendt), andre@net.in.tum.de

(J. Andre), carle@net.in.tum.de (G. Carle).
https://doi.org/10.1016/j.peva.2024.102442

vailable online 28 August 2024 
166-5316/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/peva
https://www.elsevier.com/locate/peva
mailto:wiedner@net.in.tum.de
mailto:helm@net.in.tum.de
mailto:daichend@net.in.tum.de
mailto:andre@net.in.tum.de
mailto:carle@net.in.tum.de
https://doi.org/10.1016/j.peva.2024.102442
https://doi.org/10.1016/j.peva.2024.102442
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2024.102442&domain=pdf
http://creativecommons.org/licenses/by/4.0/


F. Wiedner et al.

s
B

p
h
t

o
v
l
m

p
t
p
p
f

2

F

2

a

Performance Evaluation 166 (2024) 102442 
Table 1
List of acronyms.

ADF Augmented Dickey–Fuller
BM Block Maxima
DPDK Data Plane Development Kit
DuT Device under Test
EVT Extreme Value Theory
GEV Generalized Extreme Value
GPD Generalized Pareto Distribution
HDR High-Dynamic-Range diagram
JS Jensen–Shannon divergence
KPSS Kwiatkowski–Phillips–Schmidt–Shin test
KVM Kernel Virtual Machine
LXC Linux Container
LoadGen Load-Generator
NIC Network Interface Card
NUMA Non-Uniform-Access
OS Operating System
POS Plain Orchestration Service
PoT Points over Threshold
RT Real-Time
RX Receiver
TAP Terminal Access Point
TLB Translation Lookaside Buffer
TX Transceiver
URLLC Ultra-Reliable Low-Latency Communications
VM Virtual Machine
cgroup Control Group
timestamper Timestamping Machine

Linux to reduce interrupts and other influences significantly reduces tail latency in packet processing. VMs offer a high level of
isolation that is unnecessary in many cases. Hence, a lighter version is preferred to improve resource usage.

Containers offer a lightweight virtualization alternative for resource sharing with other containers and host OS on the same
ystem. While containers do not virtualize the complete OS, several lightweight software isolation mechanisms are available [3].
oth solutions, VMs and containers, and their induced latency may vary between base systems and vendors.

Given the significance of low latency and high reliability in critical systems, evaluating the tail-latency behavior of packet
rocessing during the long-term execution of applications in containers is essential. Moreover, analyzing the influence of the general
ardware mainboard architectural system is needed for an in-depth understanding of influences outside of the used software systems
owards bare-metal, container, or VMs as solutions. Herein, we provide

1. an investigation of the influence of optimization techniques on tail-latency using full- and light-virtualization utilizing
different hardware system architectures,

2. a model for tail-latency behavior in packet processing within containers and VMs,
3. a comparison of using network packet processing applications on bare metal, containers, and VMs for low-latency optimized,

commercial off-the-shelf systems for the use with URLLC, and
4. an analysis of virtualization techniques on selected hardware architectures and their influence on latency.

This work is based on our work presented at International Teletraffic Congress 35 (ITC-35) 2023 in Torino, Italy [4]. We extended
ur work with additional recommendations based on the cache model of the system’s architecture and an analysis of different
endor’s additional mainboard architectural system for a complete comparison and analysis. Moreover, we additionally analyzed a
ayer-3 forwarding application, extending our analysis of layer-2 forwarding applications towards the additional overhead due to
ore heavy packet processing on the upper layer.

The article is structured as follows: Section 2 offers background information and presents the current development and research
rogress in virtualization and latency optimizations, including software- and hardware-based ones. Section 3 outlines optimization
echniques for containers. Section 4 describes the measurement setup and Section 5 evaluates the proposed approach’s results. We
rovide models of the tail latencies in Section 6. Section 7 recommends using specific virtualization techniques in low-latency packet
rocessing. Sections 8 to 10 conclude the paper by presenting limitations, reproducibility information, a conclusion, and future scope
or research and development.

. Background and related work

This section analyzes relevant literature in containers, VMs, low-latency applications and optimization, and tail-latency models.
or simpler readability are all acronyms used throughout the article summarized in Table 1.

.1. Containers and VMs

Using a single hardware machine for each customer or application is neither cost-effective nor flexible. Therefore, virtualization is

crucial technology that enables resource sharing and flexible, on-demand provisioning of resources. However, when executed in a

2 



F. Wiedner et al.

v
o

i
b
O
t
t
o

h
l
t

c
c
c
L
h
u
o
w

p
t
(
S
c
e
b
a

a
p
L
a
f
a
p
u

2

i
i

Performance Evaluation 166 (2024) 102442 
Fig. 1. Comparison between container (left) and VMs (right) [7].

irtual environment, applications with strict low-latency and reliability requirements should perform similarly to those implemented
n bare metal.

Two commonly used architectures for virtualization are hypervisor- and container-based. Hypervisor-based virtualizations (VMs)
solate the complete OS, including the kernel. We call containers lightweight or OS-level virtualizations as they share the kernel
etween host OS and containers [5]. Containers isolate mainly processes, files, and resource access [5]. As illustrated in Fig. 1, the
S kernel and hardware features are commonly not emulated or paravirtualized [6]. In Fig. 1, the base shows the hardware running

he host OS, and the top shows the types of virtualization that are available; the left side depicts containerization, which includes
he container engine used to manage the containers; Moreover, the right side depicts a VM, which shows the additional overhead
f the guest OS residing within each system.

Yadav et al. [7] describe that VMs offer a strict separation using virtualized hardware, and a completely separate OS providing a
igh level of isolation and reducing the influence of customers on each other on the same physical machine. However, this isolation
evel results in a significant overhead in resource usage, making VMs ideal for experimental and high-security applications, with a
rade-off between security and resources necessary for URLLC applications [8].

Moreover, Yadav et al. [7] specify containerization as flexible and less resource-intensive than VMs. With a shared kernel,
ontainers offer quick startup and direct device access, as Gedia and Perigo [9] have demonstrated. This minimized overhead makes
ontainers ideal for performance-critical scenarios where multiple applications must interact with each other [6]. Linux offers several
ontainer frameworks, such as Kubernetes, a cluster manager that automates deployment and enhances application portability, or
inux containers (LXC). LXC integrates all libraries of a complete OS but uses a more complex setup than solutions like Docker and
as less overhead [6]. Gedia and Perigo [9] have demonstrated that containers outperform VMs in provisioning time and memory
tilization. Wiedner et al. [10] detailed that the version of control groups (cgroup) matters for latency-sensitive systems as version 2
utperforms version 1. Control groups are an integral part of process isolation in LXC containers. Therefore, in our further analysis,
e utilize cgroups version 2.

The throughput analysis of containers and VMs is a common area of research, which is evident from the considerable attention
aid to it. Barham et al. [11] studied the impact of CPU resources on XEN-based VMs, focusing on variations induced by time slices on
he CPU. Furthermore, Abeni et al. [12] analyzed the effect of tuning Linux on the maximum packet rate of kernel virtual machine
KVMs) and achieved promising results by binding CPU affinity of interrupts to selected cores and the VMs to remaining cores.
imilarly, Tran and Kim [13] found that CPU core assignment for containers is crucial for improving throughput. Morabito et al. [14]
onclude that containers challenge traditional systems regarding resource usage and performance. Furthermore, Cha and Kim [15]
mployed containers to offer low-latency edge services and demonstrated that container setups achieve near-optimal throughput
y utilizing hardware support. To conclude, research on packet processing in virtualized systems primarily focuses on throughput
nalysis or latency using overlay networks such as [16,17].

Several studies have analyzed latency on VMs as demonstrated in [2,18–20]. However, latency analysis for packet processing
pplications based on containers is typically not addressed in present studies despite the necessity to examine the influences of
acket processing through containers. New research focuses on latency and real-time applications within containers. For example,
iu et al. [21] recently analyzed the usability of Docker’s overlay network compared to the host network mode for real-time
pplications. They conclude that the overall performance of the host-network mode is better on average, but tail latency was not
urther analyzed. Furthermore, Wiedner et al. [4,10] analyzed the latency performance of LXC containers in comparison to VMs
nd hardware, concluding that optimized LXC can achieve similar tail latencies as the other two variants. This work extends the
aper from Wiedner et al. [4], demonstrating that low-latency applications on containerized systems are possible. However, they
sed only one potential system architecture of mainboards, leaving the comparison to other architectures for future work.

.2. Low-latency applications

Packet-processing applications with end-to-end latency requirements of <1ms in general-purpose traffic networks are becoming
ncreasingly important with new technologies such as the 5G URLLC profile [22]. Therefore, packet processing applications must

mprove latency and reliability.

3 



F. Wiedner et al.

i
s
n
o
l

t
b

2

c
p
t
r
o
o
r
s

a
f

2

t
h
a
m
t

a
w
i
p
c
N

a
e
o
a

i
d
o
c
s

A
s
p
c
o

Performance Evaluation 166 (2024) 102442 
Gallenmüller et al. [23] analyzed latency implications on intrusion detection systems and found that using a specific OS, reducing
nterrupts, and using a specific network interface card (NIC) help to reduce latency spikes. As Bozilov et al. [24] reported, adding
ecurity features into the network introduces additional latency, but they are increasingly important. Therefore, it is crucial to reduce
etwork-induced latency to allow security mechanisms within networks. Jain et al. [25] have shown that improving the data plane
n specialized network function virtualization systems utilizing the data plane development kit (DPDK) can significantly reduce
atency.

Other examples of low-latency applications include data center internal communication [26], communication phases in dis-
ributed machine learning applications [27], and cloud systems providing centralized services to multiple users as outlined
y Gandhi et al. [28].

.3. Low-latency OS optimizations

Tuning and optimizing OS is essential to enable predictable, reliable, and low-latency applications on any system type, whether
ontainer, VM, or bare metal. Previous studies report that tunings in specific areas are possible, such as reducing the impact of
rocessing IO on a container and reducing the influences of the system itself. For instance, Gallenmüller et al. [23] have demonstrated
hat interrupts on the packet-processing core have a significant impact on latency. Turning off timer ticks, isolating cores, and
educing energy-saving mechanisms on VMs can minimize the impact on packet processing through virtualization [8]. Which
ptimizations are available and needed depends on the used hardware and its architecture, including memory locality, cache design,
r hardware-supported optimizations as depicted by [29]. Using poll mode instead of interrupt-based drivers improves latency and
educes the number of context switches. Handley et al. [30] found that using DPDK [31], a framework for poll-mode networking
ignificantly reduces processing latency as the application can be isolated from the OS kernel.

Like VMs, container performance can be improved by reducing interrupts and adding predictability [32]. Herein, we evaluate
nd demonstrate the optimization potential for containers compared to packet processing on VMs or bare metal, including exploring
urther optimizations for low-latency-networking.

.4. Hardware-dependent optimizations

Software optimizations are needed for enabling low latency on generic-purpose hardware, but their impact depends heavily on
he underlying hardware and its design [29]. Moreover, most detailed implementation information is not available to the public for
ardware systems as vendors protect themselves for economic reasons such that most impacts leading to hardware details remain
black box for the researcher. Based on this, finding the reason behind the measurement results of hardware differences takes
uch work. Therefore, analyzing results on different systems and system architectures is required to draw clear conclusions on

heir influence.
Architectures such as AMD’s chiplet-based design, initially introduced with the first generation AMD EPYC processors, pioneered

new area of distributed processing and memory access [33]. In this case, each chiplet defines one non-uniform-access (NUMA) area
ith attached IO devices. Based on related work, this design provides improved performance but unlocked new challenges towards

nter-chip communication, memory, cache access, and synchronization of hardware clock timings [33]. The interconnection mainly
rovides a higher cost regarding memory access latency, which also impacts network performance when not pinned to a core directly
onnected to the specific NUMA node. The cache is divided into the different NUMA nodes, which can be divided even within the
UMA nodes.

Another substantial vendor in computer mainboards is Intel, which provides the Intel Xeon server architectures. Intel adhered to
monolithic computer architecture, such as Skylake, without chiplets and the challenges of inter-chiplet communication, providing

nhanced possibilities for optimization of cache access [34]. Those different systems provide advantages and disadvantages based
n the specific use case. We conclude that analyzing differences based on hardware machines is done on a use-by-use basis, as the
dvantages and disadvantages significantly depend on individual needs.

Until now, only two selected systems have been presented, and the challenge is: On the one hand, vendors improve architectures
ncrementally, leading to new generations of system architectures. On the other hand, companies such as ARM offer an entirely
ifferent architecture that is not binary-compatible with x86. Different vendors such as Intel, ARM, or AMD adapt their architectures
ver time to overcome their challenges and provide enhancements for their user [35]. Depending on the hardware machines, the
onclusion drawn from measurements can be quite different, which makes the selection and evaluation process of hardware machines
ignificantly harder.

Optimizing the systems differs due to hardware-specific optimizations and constraints. For example, Intel provides the Intel Cache
llocation Technology [36], a way to highly customize the cache’s access and usage. In contrast, AMD does not provide a similar
cheme resulting from the physically more divided cache. This technology can be further used for improving the application’s
erformance, such as in [37]. Optimizing the assignment of cores to VMs or containers is more important for AMD due to its
hiplet design based on NUMA-nodes [33]. Using these approaches, we will further analyze the systems using, in general, the same

ptimizations as applicable, but also leverage hardware-specific optimizations based on results from previous works.

4 



F. Wiedner et al.

e

2

n
d
p
i
o
t
D

s
p

2

l
c
d

p
n
s

(
G
F
w
m

s
m

3

W
H
c

Performance Evaluation 166 (2024) 102442 
Fig. 2. Histograms of normalized datasets for latency-, precipitation-, and water discharge measurements [40,41]. The measurements were selected for their
xemplary nature.

.5. Low-latency on container

Using containers for low latency and highly reliable systems can be challenging but feasible. The processing time on the container
ode is prolonged due to interrupts needed for the container engine. To mitigate this issue, one method is to use poll-mode
rivers that minimize context switches and interrupts. DPDK [31] provides user-space, poll-mode networking to accelerate packet
rocessing, with a broad range of available applications such as MoonGen [38], a high-speed packet generator, and Snort [39], an
ntrusion detection system. Using user-space networking within containers requires additional tasks outside the container as selected
perations require privileged access, such as binding interfaces to the user-space drivers [13]. They must be performed initially on
he host OS, after which the interface can be moved into the container’s namespace. Tran and Kim [13] have demonstrated that
PDK applications can be used with containers after performing these additional steps.

Moreover, containers cannot be entirely isolated from the host OS as a shared kernel is used, and interrupts are needed on the
pecific cores, resulting in the challenge of optimizing them for low-latency operations while reducing the influence of operations
erformed outside of the containers. The challenges presented herein illustrate the trade-off between resource sharing and URLLC.

.6. Tail-latency behavior and models

Distributions of measured latencies in communication networks typically exhibit a long tail [8]. This long tail is not unique to
atencies; for example, it exists in measured precipitation [40] and water discharge in river networks [41] as shown in Fig. 2. We
an observe three long-tailed distributions with varying scale and location factors; note the log scale. Both precipitation and water
ischarge are commonly modeled using Extreme Value Theory (EVT).

EVT is a statistical technique used to model the behavior of distribution tails [42]. It relies on historical data to predict the
robability and magnitude of rare events like natural disasters, e.g., floods as indicated by precipitation or water discharge. In the
etworking domain, EVT can be utilized to model tail latencies since they constitute similarly rare events. Previous studies have
uccessfully applied EVT to analyze time sequences in both wired and wireless networks [43–46].

Within EVT, a distribution’s tail is determined using either the Block Maxima (BM) approach or the Points over Threshold
PoT) approach. The BM method uses a Generalized Extreme Value (GEV) distribution as a model, while the PoT method uses a
eneralized Pareto Distribution (GPD) model. The connection between the selection method and type of model is described by the
isher–Tippett–Gnedenko- [47] and Pickands–Balkema–De Haan [48,49] theorems respectively. The PoT method is less wasteful
ith data; therefore, it is typically preferred over the BM method [42]. As a result, we only consider the PoT method and GPD
odel.

Our study adopts a similar approach to previous studies to predict and validate the likelihood of latency spikes. The validation
hows an accurate predictive power of such models when extrapolating tail-latency magnitudes and frequencies to extended
easurement periods. Additionally, we evaluate the convergence of these predictions.

. Optimization analysis

In computer systems, processes can be affected, among others, by interrupts, the sleep state of CPUs, or concurrent processes.
hile throughput in packet processing is unaffected by these influences, latency, specifically tail latency, is significantly impacted.
aving examined optimizations in both bare-metal and VM environments, we evaluate the suitability of these optimizations for

ontainer environments.

5 



F. Wiedner et al. Performance Evaluation 166 (2024) 102442 
Table 2
Latency optimized boot parameters for Host OS running containerized systems.

Parameter Value Description

rcu_nocbs [cores] No RCU callbacks
rcu_nocbs_poll No RCU callback threads wakeup
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
tsc reliable Rely on TSC without check
mce ignore_ce Ignore corrected errors
audit 0 Disable audit messages
nmi_watchdog 0 Disable NMI watchdog
skew_tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
nosmt Disables hyperthreading

Fig. 3. Measurement-setup structure.

Several studies have examined network latency optimization techniques in VMs and bare-metal systems [8,29,50]. The host
OS manages the scheduling of applications in containers, which means achieving complete isolation from interrupts is impossible.
Consequently, optimizations such as a tick-less-kernel and isolation of selected CPUs are not feasible as a shared kernel is used,
requiring access to the specific cores. Due to these difficulties in isolating containers, it is essential to explore new approaches and
conduct assessments of the suitability of these optimizations in containers.

To minimize the impact of the host OS on the container and between containers, LXC provides a method for reserving cores and
memory exclusively. Additionally, automatic load balancing in LXC can be turned off to reduce overhead and ensure no additional
scheduling is needed [3]. To summarize, these specialized container isolation techniques help to minimize the external influence
on a container.

Fine-tuning the poll mode for idle CPUs, disabling energy-saving mechanisms, and turning off audit messages can improve
container performance like VMs. Interrupts affinity can be set to a specific core, and logging of backtraces can be reduced to
improve latency. Turning off simultaneous multithreading improves latency for all systems. Table 2 presents the suggested list
of boot parameters. The list is based on the presented container adoptions of optimizations for VMs in the study of Gallenmüller
et al. [23]. Using the program taskset, it is possible to pin the affinity of all ready-copy-update processes to a core to reduce their
scheduling on container cores. However, when resources are limited, the CPUs should be shared between containers, increasing tail
latencies.

Furthermore, Intel provides additional optimization possibilities for its systems that are not available for AMD-based systems
to our current knowledge. Gallenmüller et al. [23] performed their measurements on an Intel-based system, and their additional
optimizations will be acquired in this paper for Intel-based machines. We additionally turn off the dynamic voltage and frequency
scaling with pstates, which can introduce additional delay when a core is idling or not fully utilized on Intel-based machines [29].
Moreover, we will use all optimization boot parameters outlined in Table 2 on all analyzed systems. This setup enables us to compare
results obtained from systems of different vendors towards latency performance with packet processing systems inside containers.

Moreover, different papers and articles describe additional performance optimizations for containers to improve the latency, such
as [16,17]. Several cache optimizations for overlay and bridge networks are available, such as [16]. We cannot use them directly in
our case, as we plan to overcome this issue by using direct-attached NICs inside the containers providing direct-memory access from
the container and hardware device. Using this, we aim to directly attach the NIC to the container’s namespace. Therefore, isolate it
from access to other containers, which is different than the host network mode Docker provides. Moreover, analyzing this paper’s
performance improvements, we conclude that cache design and usage can be an issue based on different cache and system designs.
However, our utilized methodology does not allow us to utilize the optimization techniques from [16,17]. Direct access to the NIC
reduced scalability by providing higher performance and reduced overhead.

4. Measurement setup

For precise measurements, load generation and timestamping are performed on separate machines, as depicted in Fig. 3. We

adopt two scenarios with distinct hardware to extract differences based on hardware architecture. The setup shown in Fig. 3 is the

6 



F. Wiedner et al.

C
o

s
d

t

a
F
w
h
o

i
i
t
m

m

Performance Evaluation 166 (2024) 102442 
Table 3
Hardware configuration of scenario 1 and scenario 2.

scenario 1 scenario 2

DuT
CPU AMD EPYC 7551P Intel Xeon Silver 4116
RAM 128 GB 192 GB
NIC 2 × Intel X710 10GbE SFP+ NICs

LoadGen
CPU Intel Xeon Silver 4116 Intel Xeon Gold 6130
RAM 192 GB 384 GB
NIC Intel 82599ES 10-Gigabit SFP+ NIC

timestamper
CPU AMD EPYC 7551P 32-Core
RAM 500 GB 128 GB
NIC Intel E810-XXVDA4 NIC Intel E810-XXV NIC

same for both scenarios, only differing in utilizing other hardware machines. We utilize our results from [4] as scenario 1, and
scenario 2 provides insights into an additional hardware architecture when utilizing a container for low-latency networking.

In scenario 1, the load-generator (LoadGen) features an Intel Xeon Silver 4116 CPU, 192 GB RAM, and a dual-port Intel
82599ES 10-Gigabit SFP+ NIC connected to the Device-under-Test (DuT) using optical fibers. In scenario 2, the LoadGen runs on
an Intel Xeon Gold 6130 CPU, 384 GB RAM, and the same NIC and connections as in scenario 1. The differences do not influence
our results as we utilize only a single core for packet generation in both scenarios and use hardware rate-limiting based on the NICs
capabilities. Moreover, using an external timestamping machine (timestamper), latencies are measured after the packets leave the
LoadGen.

We use a timestamper linked to the fibers between DuT and LoadGen with passive optical terminal access points (TAPs) to ensure
high precision measurements per packet at line rate. These TAPs introduce a constant delay to the timestamps on both ends and
can be neglected. The timestamper in scenario 1 is equipped with an AMD EPYC 7542 32-Core Processor, 500GB of memory,
and an Intel E810-XXVDA4 25Gbit∕s NIC flashed to 10Gbit∕s offering a precision of 1.25 ns [51]. This ability takes timestamps in
the hardware using the precision of the Intel E810 NIC. Timestamps taken in software are prone to the same interrupts and kernel
operations as our DuT; therefore, using hardware timestamping significantly reduces the influence of the timestamping method on
the results. In scenario 2 a machine with the same CPU is used, 128Gbit of RAM and instead of a 4-port Intel E810-XXVDA4
25Gbit∕s NIC we have a dual-port Intel E810-XXV 25Gbit∕s NIC as well flashed to 10Gbit∕s. Both cards provide the same capabilities
but differ in the number of available ports. As we utilize hardware timestamping, the available memory does not influence the results
as it is not a bottleneck. The original hardware from scenario 1 was not longer available under our measurements for scenario
2.

The DuT in scenario 1 is equipped with an AMD EPYC 7551P 32-Core Processor, 128 GB RAM, and 2 × Intel X710 10GbE
SFP+ NICs, where one port each is linked to the LoadGen. In scenario 2, the DuT is equipped with two Intel Xeon Silver 4116

PUs, 192 GB RAM, and 2 × Intel X710 10GbE SFP+ NICs, cabled in the same way as scenario 1. To utilize differences based
n the hardware design of the DuT, we utilized different scenarios based on different DUTs with different mainboards.

With this setup, any measured differences can be traced back to the mainboard and CPU, as the same NICs are used in both
cenarios. On the DuT, we execute our experiments using bare-metal, VM, or container. The used solutions access the interfaces
irectly. Finally, we summarize the hardware configurations in Table 3.

To retrieve more information about the architectural differences of both DuT scenarios, we utilized the tool lstopo from the
hwloc package [52]. Figs. 4 and 5 are showing information about architecture, cache design, and bus configurations. Fig. 4 shows
that scenario 1 machine consists of one mainboard entity divided into four NUMA chiplets with four cores sharing a 8MB layer
three cache. The used NIC ports are distributed on node 1 (TX) and node 3 (RX) with enp33s0f0 and enp100s0f0. This setup requires
copying data to send and receive over the Infinity Fabric interconnects between NUMA nodes.

In scenario 2 (cfg. Fig. 5), the NICs are both connected to node 0 (enp24s0f0, enp25s0f0) over the same PCIe bus. A second
CPU is installed in another socket, declared as NUMA node 2. However, as no PCIe device is connected to it, it has no relevance
to our measurements. Each CPU has only one shared layer three cache of 17MB. In conclusion, the significant differences between
he two sampled systems lie in different amounts and kinds of NUMA nodes and cache architectures.

The configuration in Fig. 3 facilitates precise analysis of packet processing tail-latency and lets us compare different hardware
nd software configurations accurately. We use PostgreSQL for evaluation to enable easy extension and evaluation of the analysis.
urther, we employ MoonSniff scripts [38] of MoonGen on LoadGen and timestamper to transmit and record minimally sized packets
ith 64B. We assign identifier numbers to transmitted packets for correlation and timestamp the packets using the respective
ardware timestamping features. Previous studies suggest that the primary factor relevant for packet processing is the number
f packets, and not their size [18,20].

We use Debian Bullseye 11 (kernel 5.10) and execute a libmoon [38] layer two (l2) forwarding application to minimize the
mpact of the application itself unless specified otherwise. The forwarding application runs inside the container to analyze the
mpact of packet processing within the container itself. All experiments employ the packet rates from 10–1000 kpackets∕s to analyze
he effect on latencies. The number of data points collected depends on the packet rate; for example, with 1Mpkts∕s, we collect 160
illion data points per experiment in 160 s.

To provide simple automation and reproducible test execution, we adopt the plain orchestration service (POS) for testbed
anagement and experiment execution [53]. Using this concept, we could use the same scripts and technologies as in [4] to perform
7 



F. Wiedner et al.

d

5

f
k
i
b
a

5

a

Performance Evaluation 166 (2024) 102442 
Fig. 4. Logical View of the hardware machine in Scenario 1 with only used PCI lanes.

comparable measurements. In Section 9, we describe the access to the different data and scripts to enable reproducing all of our
results simply and easily. We encourage readers of this paper to analyze the webpage1 and the provided extra materials to gain a
eeper understanding of the evaluation and the utilized technologies.

. Evaluation

Our evaluation of tail latency behavior in packet-processing containers utilizes the optimizations described in Section 3 and
ocuses on the two hardware scenarios described in Section 4, including the influence of OS kernel variants, such as a real-time (RT)
ernel, and a vanilla kernel. We assess different packet rates, compare the outcomes to those of VMs and bare-metal and analyze
f the observed behavior allows the usage within URLLC applications. Furthermore, we evaluate all measurements in comparison
etween an AMD architecture in scenario 1 and an Intel architecture in scenario 2. scenario 1 and its evaluation have
lready been published in [4]; we use the results obtained there to compare them to scenario 2.

.1. Scenario

We devised a straightforward scenario depicted in Fig. 3 to examine precise low-latency behavior in container setups. Packets
re generated externally, transmitted to the DuT, and forwarded through a basic packet processing application – a l2 forwarding

1 https://wiednerf.github.io/container-in-low-latency/
8 

https://wiednerf.github.io/container-in-low-latency/


F. Wiedner et al.

r
W
a
t
e
c

5

c
p
(
l
t

Performance Evaluation 166 (2024) 102442 
Fig. 5. Logical View of the hardware machine in Scenario 2 with only used PCI lanes.

application of libmoon – before being sent back over another link. The forwarding application operates within the analyzed
system.

With the libmoon l2 forwarding application, we examine the latency induced by network processing, hardware, and virtualization
rather than the application itself. Utilizing, for example, layer three (l3) forwarding application adds a constant additional delay
on top of the results examined in this article such as [23] have described for Surricata, an intrusion detection system operating on
layer three. Moreover, all l3 and upper layer forwarding and packet processing applications must process at least l2 and manage
the forwarding tasks. Therefore, a l2 forwarding application provides a valid baseline for our measurements and comparison of
optimization techniques. We analyzed a l3 sample forwarding application and compared the results with the l2 variant resulting in
lower maximum packet rate and shifted latency. This approach enables the evaluation of the effect of optimization techniques and
the underlying hardware system in isolation. We compare the same application on VMs and bare-metal. Through these results, we
provide recommendations for using low-latency container applications and identify any limitation

We investigated packet processing in containers using a vanilla Debian OS without optimizations and studied the occurrence of
latency spikes over time, as is shown in Fig. 6. The figure displays the 5000 worst latency events over time with high peaks induced
by interrupts and rescheduling. High latency spikes occur at specific points in time, with all other latencies below 200 μs. A periodic,
ecurring pattern can be seen in the worst-case delays below 200 μs caused by rescheduling interrupts regularly emitted on all cores.
hen we analyze now the worst-case latency based on the requirements of URLLC for flows to have end-to-end-latencies of <1ms

t the 99.999th percentile, we already break these requirements with a one-hop scenario without further optimizations. To establish
he validity of our findings, we repeated all experiments multiple times, selecting the measurement with the worst tail-latency for
valuations to ensure the capture of rare events. These results show why examining different options, optimizations, and hardware
onfigurations is essential to provide valid suggestions for using specific technologies for different use-case scenarios.

.2. Packet rates

We analyze the latency by comparing the effects on systems with and without optimizations discussed in Section 3, starting with
omparing different packet rates. Fig. 7(a) illustrates the behavior of non-optimized vanilla compared to the optimized RT variant
resented in Fig. 7(c) in scenario 1. The logarithmic plots show the latency against the percentiles using high-dynamic-range
HDR) diagrams [54]. By using HDRs in our evaluation (e.g., Figs. 7(a) and 7(c)), we focus on tail latency events to analyze rare
atency spikes by providing a logarithmic scale on both axes to focus on the differences in the tail-latencies specifically. Across all

he rates, the optimized and non-optimized systems in scenario 1 exhibit similar tail-latency behavior at the 99.99th percentile

9 



F. Wiedner et al. Performance Evaluation 166 (2024) 102442 
Fig. 6. 5000 worst latency events for measurements using LXC-containers based on Debian 11 in scenario 1 with1Mpkts∕s.

Fig. 7. HDR diagram of latency for selected packet rates (kpkts∕s), legend in Fig. 7(a).

and 99.9995th percentile, respectively. Lower packet rates are more susceptible to high latencies in lower percentiles; for instance,
at 200 kpkts∕s, more than 50% of all packets reach a maximum latency of 110 μs. Additionally, all measurements indicate higher
median latencies when the packet rate is decreased, which is suspected to be due to the lower number of measured packets. The
measurements of scenario 2, presented in Figs. 7(b) and 7(d), depict a similar behavior until the 99.99th percentile is the optimized
and non-optimized behavior similar to each other.

In general, in the non-optimized variant, the results in both scenarios show significant spikes. These spikes are caused by a
higher number of Translation Lookaside Buffer (TLB)-shootdown interrupts on the respective core and rescheduling events. These
shootdowns are executed when the processor changes the mapping between virtual and physical memory addresses to notify all other
processors with associated caches to invalidate their respective mapping. This high number of TLB shootdowns issuing a higher spike
difference in scenario 2 is caused by the different designs of the layer three caches between cores in our used machine in Fig. 5
and, therefore, results in the recommendation to consider cache design when deciding if containers can be used for low-latency
especially when optimizations are not possible due to scalability issues. Fig. 8 shows the corresponding recorded interrupts over
time in a normalized function and the 5000 worst-case events of the exact measurement using a vanilla non-optimized kernel in
scenario 2. Here, the highest outliers clearly result from a mixture of TLB shootdowns and rescheduling interrupts called next
to each other.

At lower packet rates, the impact on percentiles for rare events is higher because fewer packets are captured within the same
measurement time and the amount of packets leaves more space for delays due to the reduced number of packets processed. Hence,
we conclude that rare occurrences have a higher impact at lower rates, and no further observations of reasons for the system were
made. Therefore, higher packet rates are more suitable for tail-latency analysis, whereas higher rates are insufficient for median
analysis due to the significant differences in median behavior. Similar to the measurements in scenario 1, the differences in
scenario 2 between the different rates are more significant until the 99.99th percentile than in the tail-latency. The tail-latency
ranges from 5 μs to 50 μs across the different rates. Overall, measurements indicate that all evaluated variants can process 1Mpkts∕s

with minimally sized packets without packet loss used in the following evaluations.

10 



F. Wiedner et al.

T
t
a
t
s
R

n
u
a
t
T
s
h
v
W

Performance Evaluation 166 (2024) 102442 
Fig. 8. 5000 worst case events over time and corresponding interrupt events normalized over time in scenario 2.

5.3. Optimizations

Additionally, we investigate the difference in OS kernel variants by including experiments with vanilla, nohz, and RT kernel.
he nohz kernel uses a kernel configuration parameter to remove timer ticks from cores with only one active process. To utilize
his kernel features, the kernel must be built with the CONFIG_NO_HZ_FULL parameter and the nohz_full bootparameter needs to be
dded. The bootparameter describes which cores should be isolated from the timer tick, similar to the isolcpu parameter. In contrast,
he RT kernel provides deterministic behavior, which should improve latency reliability behavior. For the RT kernel we used the
pecific RT-preempt kernel shipped with Debian 11 available via the package repositories. This allows us to utilize a common-used
T image available for broad usage without requiring us to build the kernel extra.

The results of the three kernel variants are presented in Fig. 9. Fig. 9(a) shows the measurement results for scenario 1 for the
on-optimized OS in the three kernel variants, revealing a high tail-latency spike towards 1000 μs at the 99.999th percentile when
sing the nohz and vanilla kernel. All kernel variants exhibit latency spikes at the 99.9th percentile. The RT kernel variant records
maximum latency of around 140 μs. When comparing these results to scenario 2 in Fig. 9(b), we can see similar behavior with

he RT variant compared to the vanilla variant providing lower latencies as in scenario 1 until at least the 99.999th percentile;
he RT variant is in scenario 2 in general lower compared to scenario 1, which is in line with results from previous studies on
imilar machines such as [23]. In contrast, Fig. 9(c) shows the results for the optimized OS in scenario 1, where the RT variant
ad a slightly lower maximum latency of 110 μs compared to the non-optimized RT variant. Moreover, the nohz and vanilla kernel
ariants lead to significantly lower tail latencies at around 510 μs compared to the measurements using kernels without optimization.
hen analyzing the optimized results of scenario 2, the latencies up to the 99.99th percentile remain below the limit of 10 μs

compared to the non-optimized version and the optimized version in scenario 1 which only stays until the 99.5th percentile below
this margin. Moreover, the tail-latency for scenario 2 is still receiving multiple TLB-shootdowns over time, resulting in a high
tail-latency spike reaching even higher tail-latencies in vanilla and nohz kernel-variants compared to the non-optimized version due
to more batched interrupts. The optimized RT kernel variants, however, do not receive such interrupts due to better isolation and
show stable tail latencies. In all cases, the RT kernel provides the lowest average and tail latencies throughout the tested scenarios
and is holding the requirements for URLLC.

Concerning tail latency, the optimized variants outperform the not optimized ones, which are affected by interrupts and
rescheduling. Similar to the findings of related work on bare-metal [23], our measurements indicate that the nohz variant attains
11 



F. Wiedner et al.

n
n
1
l
c
c

t
v
c
i
o
a
i
p

5

W
a
u

Performance Evaluation 166 (2024) 102442 
Fig. 9. HDR diagram of Debian kernel variants at 1Mpkt∕s, legend in Fig. 9(a).

Fig. 10. 5000 worst latency events for measurements using LXC-containers based on Debian 11.

early the same tail latencies as the vanilla one on Debian 11. With our measurements, we can even provide further insights: the
ohz variant with Debian 11 provides no longer improvements independent of the underlying hardware systems in scenario
, scenario 2, and in the paper [23]. The RT variant displays similar results to the vanilla one up to 99.99th percentile of

atencies. However, latencies do not increase further, limiting the tail latency in scenario 1 and scenario 2. The nohz kernel
an only provide benefits when no scheduling is needed, but LXC requires this to schedule the container engine on the relevant
ores. Meanwhile, the RT kernel provides more stable tail latencies due to the deterministic behavior of the OS kernel operations.

In Fig. 10(a), the 5000 worst-case events of our baseline measurements using the non-optimized vanilla variant are compared to
hose of an optimized RT one in scenario 1. The behavior of the optimized RT kernel variant is similar to that of the non-optimized
anilla kernel variant without the rare, significant outliers that are caused by rare interrupts scheduled on the packet processing
ore, which is similar to the results in Fig. 10(b) for scenario 2, especially in the optimized RT variant. Here, the outliers correlate
n terms of time nearly to the distances seen in the non-optimized version. Due to different setup times, this observed movement
f worst-case events over time cannot be depicted in the optimizations, whereas the reduced higher latencies, especially after 4 s,
re dependent on rescheduling interrupts as well as the optimizations in this case as well show that the outliers are minimal lower
n comparison. In all scenarios when utilizing the optimized variant with RT-kernel, we can stay below the 1ms at the 99.999th
ercentile supporting the URLLC target in comparison to the vanilla, non-optimized variant.

.4. Container vs. VMs

Fig. 11 compares measurements between container and VM setups using an optimized RT and a non-optimized vanilla variant.
e execute the forwarding application for this experiment inside the VM compared to inside the container. The VMs are operating

s KVM instances on the DuT. In our measurements, the RT kernel variant demonstrates better results, which we attribute to the
tilization of Debian 11 in contrast to Debian 10 and, subsequently, a newer kernel used in related work [2,8].
12 



F. Wiedner et al.

i
s
T
f
t
t
t

5

v
b
d
m
s
i
i
2
r
i

m
c
r

5

s
o
l
t
t

Performance Evaluation 166 (2024) 102442 
Fig. 11. HDR diagram of latency on VMs and LXC containers.

Fig. 12. HDR diagram of latency on bare-metal and LXC containers.

As presented in Fig. 11(a), the performance differences between VMs and containers are insignificant concerning tail latencies
n both scenarios. When we compare the results from both scenarios, the result for VMs as described in related work [8] shows a
ignificant improvement using the optimizations compared to the non-optimized variant of reaching a maximum of less than 30 μs.
his results from the better isolation properties of the Intel-based CPU compared to reducing the kernel influence, which is impossible
or LXC containers due to their usage of a shared kernel. It results in a general evaluation that VMs in the vanilla variant show lower
ail latencies due to better isolation by default in both scenarios. However, VMs with higher overhead reach the same maximum
ail latency at lower percentiles for all measurements and scenarios. By carefully isolating and optimizing containers, results similar
o VMs can be achieved, requiring fewer resources.

.5. Container vs. Bare-metal

The forwarding application is executed directly on bare metal compared to running inside a container for this comparison. The
anilla variant for containers, which provides minimal container isolation by default, yields slightly lower tail latencies (Fig. 12) in
oth scenarios. Meanwhile, optimized bare-metal experiments slightly outperform optimized containers primarily due to a higher
egree of isolation of the forwarding application from interrupts. Our findings differ from those reported in [23] as we use a different
ainboard. Specifically, [23] used an Intel mainboard with Intel CAT for pinning the cache to a specific core, which AMD does not

upport to our current knowledge. Furthermore, they used a DPDK l2fwd application without Lua as a wrapper, which can result
n additional latencies caused by the wrapper. Although bare-metal configurations are generally preferable due to better resource
solation, containers may be used when resource sharing is necessary. We now utilize an Intel-based mainboard in our scenario
. In Fig. 12 in both sub-figures, the same assumptions as by [23] can be drawn for the bare-metal case, resulting in promising
esults with a much lower tail-latency in the optimized variant of lower than 30 μs similar to the results using VMs. This result stays
n line with previously presented results.

To conclude, containers exhibit only a minimal overhead compared to bare-metal, contingent on the underlying hardware, which
ay vary. The overhead and improvement possibilities of containers in comparison to bare-metal and VMs vary depending on the

ache design of the individually selected hardware node. Consequently, hardware selection is critical when ultra-low-latencies are
equired.

.6. L3 vs. L2 forwarding application

Moreover, to show our results on a more complex and processing-heavy application, we additionally analyzed it using the l3-
ample-forwarding application of the DPDK project. This forwarding application adds additional overhead and processing as to an
pposite to the l2 forwarding scenario; the program has to perform parsing of the packet until and including the l3 header. The
3 application performs a lookup process using longest-prefix-matching in the forwarding information base. Due to unavailability
o the original timestamper in scenario 1 for the l3 forwarding scenario, we used for both scenario 1 and scenario 2 the

imestamper from scenario 2, with specifications as shown in Table 3.

13 



F. Wiedner et al. Performance Evaluation 166 (2024) 102442 
Fig. 13. HDR diagram of latency using l3 vs. l2 forwarding application on 600 kpkts∕s.

Fig. 14. HDR diagram of latency on kernel- versus user-space packet processing.

Fig. 13 shows a comparison between l2 and l3 forwarding application with 600 kpkts∕s as this was the last rate below reaching
an overload scenario in the non-optimized variants of the l3 forwarding application. This results in the first major difference: the
l3 forwarding application on our systems, due to its additional processing overhead, cannot process as many packets per second as
the simple l2 forwarding application.

In Fig. 13(a) the non-optimized, vanilla results for both scenarios with l2 and l3 forwarding applications are shown. Until the
99.99th percentile all, we see a clear latency shift due to the higher processing overhead. In the worst-case delay, this differs between
scenarios and l2 and l3. In scenario 1 we reach even lower latencies in the worst-case scenario. This lower tail latency could
be due to not processing a packet during a TLB shootdown or a rescheduling interrupt. Whereas in scenario 2, the influence of
those system interrupts is the same for both forwarding applications. This result could be due to the already high added latency
from the interrupts and two processing cores in the l3 application compared to only one in the l2 example.

When comparing this results to Fig. 13(b) with the RT-optimized variant, we see during the whole period a clear shift similar
to the non-optimized variants, which is reduced after the 99.99th by the results from the l2 forwarding application and the non-
optimized variants. All results show a reduced influence of the higher processing costs on tail latencies. This evaluation shows that
analyzing a simple l2 application is not enough for the average cases but already shows nearly the same results for tail latencies
due to the small added processing time for our sample l3 application. With this, the influence of the network, when the processing
overhead is not considerable, is more significant. Analysis of our l3 sample application shows that retrieving recommendations based
on our baseline results is valid for further analysis, even for applications with higher processing times.

5.7. User-space vs. Kernel-space network driver on container

Thus far, networking in user space has been examined. We investigated a Linux traffic control mirroring application for
comparison with kernel-space networking. The application enables the assessment of the impact of kernel-space networking.

Fig. 14 shows the tail latency for kernel-space networking compared to user-space networking. The tail latency after the 99.999th
percentile was similar for both variants of packet processing in scenario 1. The optimized variants in scenario 1 measured a
maximum latency of 110 μs in experiments. Compared to the 99.8th percentile for user-space packet processing, the latency increases
gradually for the 50th percentile. This result suggests that the optimizations employed for user space can be used for kernel-space
processing. Thus, container isolation enables the use of kernel drivers for low-latency applications. Similar to the experiments on
the container with scenario 1, kernel-space networking in a container in scenario 2 are significantly differing, wherein the
optimized variant until the 99.99th percentile user-space networking is significantly better than kernel-space until the tail-latency,
where kernel-space is exhibiting an additional spike compared to user-space networking.

In the non-optimized variant, the tail latency in kernel-space networking exhibits worse performance, with a difference of at least
one order of magnitude in scenario 1 as presented in Fig. 14(a). In scenario 2 kernel- and user-space networking are in the non-
optimized variant performing in the tail-latency similar to each other. However, comparing kernel- and user-space packet processing
in containers reveals that both are valuable for low-latency applications in containers, provided that optimization techniques are
carefully used and the hardware machines are carefully selected. Evaluating, in general, using user-space networking is an advantage
14 



F. Wiedner et al.

a
d

6

t

6

i
t
o

Performance Evaluation 166 (2024) 102442 
Fig. 15. 𝑝 values of both ADF- and KPSS tests, evaluated over the EVT part of all datasets.

Fig. 16. Jensen–Shannon divergence between GPD model and measured latencies over all datasets.

s it outperforms kernel-space in the non-optimized variant. The tail latency in the optimized variant does not differ significantly
epending on the machine, even though the kernel networking outperforms user-space.

. Tail latency model

We apply EVT to create models of the tail-latency behavior. We evaluate the predictive capability of these models on a four-fold
ime horizon.

.1. Prerequisites

The condition for the applicability of EVT is that the dataset needs to be identically distributed and stationary [55]. We assume
dentical distribution and apply two tests to verify stationarity. The two tests are the Augmented Dickey–Fuller (ADF) test [56], and
he Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [57]. ADF tests for the presence of a unit root while KPSS tests for the absence
f a unit root. The absence of a unit root is interpreted as stationarity. Fig. 15 shows the distribution of the 𝑝 values of the two tests

as applied to all datasets. We only consider the part of the datasets that is used to generate the EVT models, not the part that is
used to evaluate them. We can observe that 95% of 𝑝 values of the ADF test are less than 0.05 and 95% of 𝑝 values of the KPSS test
are larger than 0.05. This leads us to reject the null hypothesis of the ADF and accept the null hypothesis of the KPSS test, meaning
that 95% of our datasets are stationary. We refer to Wasserstein et al. [58] for a discussion on issues of using 𝑝 values. Furthermore,
we compared the test statistics of both tests with their respective critical values, leading to the same conclusion of stationarity.

6.2. Methodology

Each model is generated using the first 20% of measurement data points and validated using the following 80%, equivalent to
a four-fold time horizon. The model is derived using the Peaks-over-Threshold (PoT) method with a variably set threshold. The
PoT method classifies all data points larger than a given threshold as belonging to the tail of the latency distribution. A less-used
alternative is the Block Maxima approach, which selects maximum values from fixed-sized intervals instead. The threshold for
the PoT method is selected from the set T = {99.5, 99.9, 99.95, 99.99, 99.999} using an entropy-based method. The entropy-based
method is the Jensen–Shannon (JS) divergence [59]. It is an adaption of the commonly used Kullback–Leibler divergence [60]
with the additional advantages of being symmetric and not yielding infinite values. It is used to measure the distance between two
probability distributions. We are using it as a goodness-of-fit test for each threshold. An alternative method for threshold selection
is the parameter-stability approach [42,44].

Fig. 17 shows the absolute threshold latency values of all EVT models for each threshold percentile. We can observe that the
mean threshold value is approximately 70 μs, i.e., latencies above 70 μs are considered for the EVT model.
15 



F. Wiedner et al.

w
w
b

f
u

8

6

Performance Evaluation 166 (2024) 102442 
Fig. 17. The absolute threshold latency values of all EVT models over the different threshold percentiles.

Fig. 18. Distribution of tail parameter values 𝜉 compared to the bounded and unbounded model regions.

The data points obtained from the PoT method are then fit to a Generalized Pareto Distribution (GPD) using a maximum
likelihood estimator with a confidence level of 95%. A GPD is characterized by three parameters: the threshold (𝜇), the scale (𝜎),
and the tail (𝜉). The JS divergence is then used to select the best-fitting model between the five thresholds. Fig. 16 shows the JS
divergence for all datasets and all thresholds.

This GPD model can be used to calculate the return level 𝑥𝑚 [42] for an arbitrary return period 𝑚, as shown in Eq. (1), with the
threshold 𝜇, scale 𝜎, tail 𝜉, the number of latency measurements 𝐷, and the number of latency values above the threshold 𝐷𝑑>𝜇 .
The fraction 𝐷𝑑>𝜇

𝐷 is the proportion of latencies larger than the threshold. The return level represents the magnitude of latencies,
hich is expected to be exceeded exactly once during the return period [42]. It can be considered a lower bound on the expected
orst-case for a given run time of the system. This can be seen as a complementary measure to worst-case latency bounds obtainable
y analytical methods, such as network calculus.

𝑥𝑚 = 𝜇 + 𝜎
𝜉
⋅

[

(

𝑚 ⋅
𝐷𝑑>𝜇

𝐷

)𝜉

− 1

]

. (1)

The limit of this function for 𝑚 → ∞ describes the behavior of the tail latencies on an arbitrarily long time horizon. In the
ollowing, we will especially consider whether a model converges or diverges. This can be used as an indicator of bounded or
n-bounded expected tail latencies.

We validated the models by comparing the convergence behaviors and the relation between the return levels and the remaining
0% of the data.

.3. Results

Table 4 shows the results of applying the EVT models to the evaluation data of scenario 2. First, we will consider the number
of exceedances per model. They can be used to classify the models into two classes: models with good predictive capabilities and
models with poor predictive capabilities. We can observe models with good predictions for bare-metal, optimized VMs, optimized
containers with RT kernel, and NoHz containers. Decent predictive performances are associated with models for containers and VMs
with vanilla kernel, as well as optimized kernel networking stack with a RT kernel. Poor predictive performance is observed for
containers with RT kernel but without any optimizations as well as for the unoptimized version of the kernel networking stack. This
is mostly in line with the observed experimental results in Section 5.

Next, we will consider the percentage of bounded models. A bounded model has a finite return level for arbitrary return periods.
We can observe that all models, except for kernel networking, have at least 50% bounded return levels, while most models have a
higher percentage. Overall, there is no clear correlation between mean number of exceedances and percentage of bounded models
with a Pearson correlation coefficient of −0.02.
16 



F. Wiedner et al.

i

t

7

r
s
d
f
s
a
r

Performance Evaluation 166 (2024) 102442 
Table 4
Results of applying the derived EVT models to the evaluation data from scenario 2. The exceedances are mean values for
the number of packet bursts that have exceeded the predicted return level. This evaluation extrapolates the model to a four-fold
time horizon. The expected number of exceedances is exactly 1. The bounded column indicates the percentage of EVT models
that have a finite return value for an infinite return period.

Platform Opt. RT NoHz Vanilla # Exceedances Bounded

Bare-metal ✓ ✓ × × 0.83 58.3%

Bare-metal × × × ✓ 1.33 100.0%

VM ✓ ✓ × × 1.25 50.0%

VM × × × ✓ 2.58 66.7%

Container ✓ ✓ × × 1.42 83.3%

Container × ✓ × × 7.67 100.0%

Container ✓ × ✓ × 1.25 75.0%

Container × × ✓ × 1.67 83.3%

Container ✓ × × ✓ 2.92 75.0%

Container × × × ✓ 2.29 71.4%

Kernel Netw. ✓ ✓ × × 2.50 33.3%

Kernel Netw. × × × ✓ 22.73 63.6%

Table 5
Results of applying the derived EVT models to the evaluation data for scenario 1.

Platform Opt. RT NoHz Vanilla Exceedances Bounded

Bare-metal ✓ ✓ × × 3.30 60.0%

Bare-metal × × × ✓ 0.33 16.7%

VM ✓ ✓ × × 4.00 58.3%

VM × × × ✓ 2.58 25.0%

Container ✓ ✓ × × 3.83 66.7%

Container × × × ✓ 1.50 16.7%

Table 6
Tail-latency values for non-optimized vanilla and optimized RT version for all three systems with user-space
networking and kernel-space networking on containers only.
Technology Scenario non-optimized vanilla optimized RT

container
kernel-space 1 9969.08 μs 100.19 μs

2 744.72 μs 414.52 μs
user-space 1 659.25 μs 108.86 μs

2 373.73 μs 36.98 μs

VM 1 840.63 μs 124.12 μs
2 1560.47 μs 37.02 μs

Bare-metal 1 1077.44 μs 101.81 μs
2 716.16 μs 36.74 μs

A more detailed comparison of the tail parameter of the EVT model and the boundedness of the corresponding model is shown
n Fig. 18. Table 5 shows the same evaluation for scenario 1, as described in [4].

We conclude that measured tail-latencies on almost all variations of containers, optimized and unoptimized, are more predictable
han on VMs and in the kernel networking stack. The predictability between bare-metal and containers is roughly equal.

. Recommendations for low-latency-sliced applications

Table 6 presents the tail-latency of the non-optimized vanilla and the optimized RT variant for each technology and scenario. We
ecommend a top-down strategy for choosing a system for URLLC based on the presented findings. While a bare-metal solution is best
uited for commodity hardware, responding to on-the-fly demands can be resource-intensive and challenging. Our measurements
emonstrated that VMs and containers can perform similarly to each other when selecting the best underlying hardware architecture
or the selected technology. Therefore, we recommend analyzing additional aspects such as security, resource usage, and hardware
ystem design. We recommend using containers to ensure reduced resource usage and high flexibility when the hardware provides
fine-granular separated cache per core group. However, if higher security and isolation of applications are required, VMs are
ecommended in all hardware scenarios. Containers and VMs can be hosted on the same hardware system, providing both to

17 



F. Wiedner et al.

a
i

8

a

t

i
l

f
f

9

d

Performance Evaluation 166 (2024) 102442 
Table 7
Summarized Recommendations with ranks for each category from ✓✓✓ (best) to ××× (worst).
Technology Cache Latency Security Resources

VM
Optimized Separated ✓ ✓✓ ×

Shared ✓ ✓ ×
Non-optimized Separated ××× ✓✓ ✓

Shared ××× ✓ ✓
Container

Optimized Separated ✓✓ ✓ ✓✓
Optimized Shared ✓✓ × ✓✓
Non-optimized Separated × ✓ ✓✓✓
Non-optimized Shared ×× × ✓✓✓

Bare-metal
Optimized Separated ✓✓✓ ✓✓✓ ××
Optimized Shared ✓✓✓ ✓✓✓ ××
Non-optimized Separated ×× ✓✓✓ ××
Non-optimized Shared × ✓✓✓ ××

customers. When analyzing those scenarios towards holding the URLLC requirements, it becomes visible that especially our non-
optimized vanilla scenario in all combinations cannot hold the URLLC requirements, whereas the optimized variant of the RT image
can hold the requirements in all versions. Using bare-metal or VMs provides, on the other side, the most headroom for additional
application-induced latency, which needs to be kept in mind. This is, for example, already needed when utilizing l3 forwarding
instead of l2 forwarding due to the added constant delay.

Table 7 summarizes the recommendations. We have ranked the categories for non-optimized and optimized VMs, containers,
nd bare-metal solutions for each evaluated cache type. Generally, optimized variants perform better than non-optimized variants
n all systems, whereas the choice of technology ultimately depends on the infrastructure, requirements, and available resources.

. Limitations

Our analysis of virtualization overhead was based on single instances, not concurrent ones. Only simple applications were
nalyzed since we focused on technology-induced latency.

We did not examine shared network resources, such as previous studies [2,8] have analyzed for VMs. Further studies are necessary
o explore potential improvements and provide a more in-depth analysis of shared system resources.

Our analysis focuses exclusively on the behavior of LXC containers since previous studies indicate that alternative solutions
ntroduce additional overhead [6,14]. However, this has yet to be verified further, and comparing container solutions for improving
atency is part of future research.

Moreover, the approach of direct access to the NIC is not generally scalable. In this article, we did not analyze scalability solutions
urther, such as single-root IO virtualization, which allows splitting one PCIe device into multiple ones. We leave this analysis to
uture work.

. Reproducibility

The scripts, raw data, and analysis results required to reproduce our findings are available online, including the raw PCAPs, the
ata extracted from these PCAPs, and the plots obtained for each measurement.2 The scripts enable reproducing all measurements

and calculations on other systems, provided the necessary hardware is available for per-packet timestamping and passive optical
TAPs.

10. Conclusion and future work

Reliable and predictable low latency is critical in applications such as autonomous driving or remote medical procedures.
Resource sharing and on-demand service provisioning, such as network slices in 5G, are also vital. This study demonstrates that
lightweight virtualization is a suitable alternative for high-reliability, low-latency applications. However, achieving this requires a
tactful selection of optimization parameters, such as rt-kernels.

We can use a user-space networking application to achieve high reliability and significantly reduce tail latency. Furthermore, VMs
and containers exhibit comparable performance; however, containers require fewer resources but cannot be completely isolated. For

2 https://wiednerf.github.io/container-in-low-latency/
18 

https://wiednerf.github.io/container-in-low-latency/


F. Wiedner et al.

S
s
a

C

Performance Evaluation 166 (2024) 102442 
containers, carefully selecting the underlying hardware architecture, especially the cache design, is much important than for VMs.
Therefore, we can recommend containers if the underlying hardware supports the isolation of container resources and provides a
corresponding cache system utilizing divided spaces for different containers and CPU cores. We employed an EVT model to assess
the predictability of tail latencies in containers. We found that an optimized system in a container with an RT kernel converges more
in models than any configuration based on VMs or bare metal. This study presents the first in-depth analysis of packet-processing
latency in containers.

Further, we plan to analyze the influence of concurrent containers and CPU resource sharing and evaluate the potential of
R-IOV-based NIC sharing to improve low latency and high availability of resources. We also plan to enhance predictability using
tatistical methods over time to enable accurate planning. Finally, we plan to investigate and compare different container solutions
nd their latencies beyond current findings and the effect of using VMs and containers on the same system.

RediT authorship contribution statement

Florian Wiedner: Writing – review & editing, Writing – original draft, Visualization, Resources, Methodology, Data curation,
Conceptualization. Max Helm: Writing – review & editing, Validation, Formal analysis, Data curation. Alexander Daichendt:
Writing – review & editing, Writing – original draft, Investigation, Data curation. Jonas Andre: Writing – review & editing,
Validation, Methodology. Georg Carle: Supervision, Project administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Florian Wiedner reports financial support was provided by European Union. Max Helm reports financial support was
provided by Bavarian Ministry of Economic Affairs Regional Development and Energy. Max Helm reports financial support was
provided by German Federal Ministry of Education and Research. Max Helm reports financial support was provided by European
Union. Jonas Andre reports financial support was provided by German Federal Ministry of Education and Research. Jonas Andre
reports financial support was provided by German Federal Ministry of Education and Research. If there are other authors, they
declare that they have no known competing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgments

This work was supported in part by the European Union Horizon 2020 research and innovation programme (project SLICES-SC,
101008468, and SLICES-PP, 101079774), the Bavarian Ministry of Economic Affairs, Regional Development and Energy (project
6G Future Lab Bavaria), and the German Federal Ministry of Education and Research (project 6G-ANNA, 16KISK107, and project
6G-life, 16KISK002).

References

[1] 5G: Study on scenarios and requirements for next generation access technologies, 2017, Last accessed: May 22, 2023.
[2] S. Gallenmüller, J. Naab, I. Adam, G. Carle, 5G QoS: Impact of security functions on latency, in: NOMS 2020 - IEEE/IFIP Network Operations and

Management Symposium, Budapest, Hungary, April 20-24, 2020, IEEE, 2020, pp. 1–9.
[3] RedHat, cpuset - Red Hat Enterprise Linux 6, 2023, URL: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_

management_guide/sec-cpuset, Last accessed: Feb 29, 2024.
[4] F. Wiedner, M. Helm, A. Daichendt, J. Andre, G. Carle, Containing low tail-latencies in packet processing using lightweight virtualization, in: 35th

International Teletraffic Congress (ITC-35), Torino, Italy, 2023, pp. 1–9.
[5] Z. Li, M. Kihl, Q. Lu, J.A. Andersson, Performance overhead comparison between hypervisor and container based virtualization, in: 2017 IEEE 31st

International Conference on Advanced Information Networking and Applications, AINA, 2017, pp. 955–962.
[6] D. Bernstein, Containers and cloud: From LXC to docker to kubernetes, IEEE Cloud Comput. 1 (3) (2014) 81–84.
[7] A.K. Yadav, M.L. Garg, Ritika, Docker containers versus virtual machine-based virtualization, in: A. Abraham, P. Dutta, J.K. Mandal, A. Bhattacharya, S.

Dutta (Eds.), Emerging Technologies in Data Mining and Information Security, Springer Singapore, Singapore, 2019, pp. 141–150.
[8] S. Gallenmüller, F. Wiedner, J. Naab, G. Carle, Ducked tails: Trimming the tail latency of(f) packet processing systems, in: P. Chemouil, M. Ulema, S.

Clayman, M. Sayit, C. Çetinkaya, S. Secci (Eds.), 17th International Conference on Network and Service Management, CNSM 2021, Izmir, Turkey, October
25-29, 2021, IEEE, 2021, pp. 537–543.

[9] D. Gedia, L. Perigo, Performance evaluation of SDN-vnf in virtual machine and container, in: 2018 IEEE Conference on Network Function Virtualization
and Software Defined Networks, 2018, pp. 1–7.

[10] F. Wiedner, A. Daichendt, J. Andre, G. Carle, Control groups added latency in NFVs: An update needed? in: F.H.P. Fitzek, L.J. Horner, M. Gharbaoui, G.
Nguyen, R. Gu, T. Meuser (Eds.), IEEE Conference on Network Function Virtualization and Software Defined Networks, NFV-SDN 2023, Dresden, Germany,
November 7-9, 2023, IEEE, 2023, pp. 40–45.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtualization, in: M.L. Scott, L.L.
Peterson (Eds.), Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003, ACM, 2003, pp. 164–177.

[12] L. Abeni, C. Király, N. Li, A. Bianco, Tuning KVM to enhance virtual routing performance, in: Proceedings of IEEE International Conference on
Communications, ICC 2013, Budapest, Hungary, June 9-13, 2013, IEEE, 2013, pp. 3803–3808.

[13] M.-N. Tran, Y. Kim, Network performance benchmarking for containerized infrastructure in NFV environment, in: 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft), 2022, pp. 115–120.
19 

http://refhub.elsevier.com/S0166-5316(24)00047-6/sb1
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb2
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb2
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb2
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuset
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuset
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuset
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb4
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb4
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb4
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb5
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb5
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb5
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb6
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb7
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb7
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb7
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb8
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb8
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb8
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb8
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb8
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb9
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb9
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb9
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb10
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb10
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb10
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb10
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb10
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb11
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb11
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb11
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb11
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb11
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb12
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb12
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb12
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb13
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb13
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb13


F. Wiedner et al. Performance Evaluation 166 (2024) 102442 
[14] R. Morabito, J. Kjällman, M. Komu, Hypervisors vs. Lightweight virtualization: A performance comparison, in: 2015 IEEE International Conference on
Cloud Engineering, 2015, pp. 386–393.

[15] J.-G. Cha, S.W. Kim, Design and evaluation of container-based networking for low-latency edge services, in: 2021 International Conference on Information
and Communication Technology Convergence (ICTC), 2021, pp. 1287–1289.

[16] S. Lin, P. Cao, T. Huang, S. Zhao, Q. Tian, Q. Wu, D. Han, X. Wang, C. Zhou, XMasq: Low-overhead container overlay network based on eBPF, 2023,
CoRR arXiv:2305.05455.

[17] D. Zhuo, K. Zhang, Y. Zhu, H.H. Liu, M. Rockett, A. Krishnamurthy, T. Anderson, Slim: OS kernel support for a Low-Overhead container overlay network,
in: 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), USENIX Association, Boston, MA, 2019, pp. 331–344.

[18] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, P. Giaccone, A benchmarking methodology for evaluating software switch performance for
NFV, in: 2019 IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 251–253.

[19] G.K. Lockwood, M. Tatineni, R. Wagner, SR-IOV: performance benefits for virtualized interconnects, in: S.A. Lathrop, J. Alameda (Eds.), Annual Conference
of the Extreme Science and Engineering Discovery Environment, XSEDE ’14, Atlanta, GA, USA - July 13 - 18, 2014, ACM, 2014, pp. 47:1–47:7.

[20] J. Liu, Evaluating standard-based self-virtualizing devices: A performance study on 10 GbE NICs with SR-IOV support, in: 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), 2010, pp. 1–12.

[21] H. Liu, W. Li, Y. Pang, R. Pei, Y. Hu, Y. Liu, L. Suo, K. Li, Accelerating data delivery of latency-sensitive applications in container overlay network, IEEE
Trans. Parallel Distributed Syst. 34 (12) (2023) 3046–3058.

[22] NGMN Alliance, 5G E2E Technology to Support Verticals URLLC Requirements, 2019.
[23] S. Gallenmüller, F. Wiedner, J. Naab, G. Carle, How low can you go? A limbo dance for low-latency network functions, J. Netw. Syst. Manage. 31 (20)

(2022).
[24] D. Bozilov, M. Knezevic, V. Nikov, Optimized threshold implementations: securing cryptographic accelerators for low-energy and low-latency applications,

J. Cryptogr. Eng. 12 (1) (2022) 15–51.
[25] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K.K. Ramakrishnan, J.-C. Chen, L25GC: A low latency 5G core network based on high-

performance NFV platforms, in: Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 143–157.

[26] Y.J. Liu, P.X. Gao, B. Wong, S. Keshav, Quartz: A new design element for low-latency DCNs, SIGCOMM Comput. Commun. Rev. 44 (4) (2014) 283–294.
[27] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J.S. Rellermeyer, A survey on distributed machine learning, ACM Comput. Surv. (ISSN:

0360-0300) 53 (2) (2020).
[28] R. Gandhi, H.H. Liu, Y.C. Hu, G. Lu, J. Padhye, L. Yuan, M. Zhang, Duet: Cloud scale load balancing with hardware and software, SIGCOMM Comput.

Commun. Rev. 44 (4) (2014) 27–38.
[29] J. Mario, J. Eder, Low latency performance tuning for red hat enterprise linux 7, 2017, URL: https://access.redhat.com/sites/default/files/attachments/

201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf, Last accessed: Feb 29, 2024.
[30] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A.W. Moore, G. Antichi, M. Wójcik, Re-architecting datacenter networks and stacks for low latency and

high performance, in: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, Association for Computing
Machinery, New York, NY, USA, ISBN: 9781450346535, 2017, pp. 29–42.

[31] DPDK Project, Home - DPDK, 2024, URL: https://www.dpdk.org/, Last Accessed: Feb 29, 2024.
[32] C.-N. Mao, M.-H. Huang, S. Padhy, S.-T. Wang, W.-C. Chung, Y.-C. Chung, C.-H. Hsu, Minimizing Latency of Real-Time Container Cloud for Software

Radio Access Networks, in: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), 2015, pp. 611–616.
[33] S. Naffziger, N. Beck, T. Burd, K. Lepak, G.H. Loh, M. Subramony, S. White, Pioneering chiplet technology and design for the AMD epyc™ and ryzen™

processor families : Industrial product, in: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture, ISCA, 2021, pp. 57–70,
http://dx.doi.org/10.1109/ISCA52012.2021.00014.

[34] S. Hammond, C. Vaughan, C. Hughes, Evaluating the intel skylake xeon processor for HPC workloads, in: 2018 International Conference on High
Performance Computing and Simulation, HPCS, 2018, pp. 342–349, http://dx.doi.org/10.1109/HPCS.2018.00064.

[35] K.B. Rao, Computer systems architecture vs quantum computer, in: 2017 International Conference on Intelligent Computing and Control Systems, ICICCS,
2017, pp. 1018–1023, http://dx.doi.org/10.1109/ICCONS.2017.8250619.

[36] Intel, URL: https://github.com/intel/intel-cmt-cat, Last accessed at Feb 29 2024.
[37] Y. Kim, A. More, E. Shriver, T. Rosing, Application performance prediction and optimization under cache allocation technology, in: 2019 Design, Automation

and Test in Europe Conference and Exhibition, DATE, 2019, pp. 1285–1288, http://dx.doi.org/10.23919/DATE.2019.8715259.
[38] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, G. Carle, MoonGen: A scriptable high-speed packet generator, in: K. Cho, K. Fukuda, V.S. Pai, N.

Spring (Eds.), Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, ACM, 2015, pp. 275–287.
[39] Snort, Snort - network intrusion detection and prevention system, 2024, URL: https://www.snort.org/, Last Accessed: Feb 29, 2024.
[40] M. Ziese, A. Rauthe-Schöch, P. Finger, E. Rustemeier, S. Hänsel, U. Schneider, GPCC Full Data Daily Version 2022 at 1.0◦: Daily Land-Surface Precipitation

from Rain-Gauges Built on GTS-Based and Historic Data. 2022.
[41] I. Godfried, K. Mahajan, M. Wang, K. Li, P. Tiwari, FlowDB a large scale precipitation, river, and flash flood dataset, 2020, arXiv:2012.11154.
[42] S. Coles, J. Bawa, L. Trenner, P. Dorazio, An Introduction to Statistical Modeling of Extreme Values, vol. 208, Springer, 2001.
[43] T. Hsing, On tail index estimation using dependent data, Ann. Statist. 19 (3) (1991) 1547–1569.
[44] M. Helm, F. Wiedner, G. Carle, Flow-level tail latency estimation and verification based on extreme value theory, in: M. Charalambides, P. Papadimitriou,

W. Cerroni, S.S. Kanhere, L. Mamatas (Eds.), 18th International Conference on Network and Service Management, CNSM 2022, Thessaloniki, Greece,
October 31 - Nov. 4, 2022, IEEE, 2022, pp. 359–363.

[45] N. Mehrnia, S. Coleri, Wireless channel modeling based on extreme value theory for ultra-reliable communications, IEEE Trans. Wirel. Commun. 21 (2)
(2022) 1064–1076.

[46] M. Bennis, M. Debbah, H.V. Poor, Ultrareliable and low-latency wireless communication: Tail, risk, and scale, Proc. IEEE 106 (10) (2018) 1834–1853.
[47] R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Math. Proc. Cambridge Philos.

Soc. 24 (2) (1928) 180–190, http://dx.doi.org/10.1017/S0305004100015681.
[48] J.P. III, Statistical inference using extreme order statistics, Ann. Statist. 3 (1) (1975) 119–131, http://dx.doi.org/10.1214/aos/1176343003.
[49] A.A. Balkema, L. de Haan, Residual life time at great age, Ann. Probab. 2 (5) (1974) 792–804, http://dx.doi.org/10.1214/aop/1176996548.
[50] AMD, Performance tuning guidelines for low latency response on AMD EPYC-based servers application note, 2018, URL: https://www.amd.com/content/

dam/amd/en/documents/epyc-technical-docs/tuning-guides/56263-EPYC-performance-tuning-app-note.pdf, Last accessed: Feb 29, 2024.
[51] Intel Corporation, E810 Datasheet Rev2.5, URL: https://cdrdv2-public.intel.com/613875/613875_E810_Datasheet_Rev2.5.pdf, Last Accessed: Feb 29, 2024.
[52] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault, R. Namyst, hwloc: A generic framework for managing hardware

affinities in HPC applications, in: M. Danelutto, J. Bourgeois, T. Gross (Eds.), Proceedings of the 18th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, PDP 2010, Pisa, Italy, February 17-19, 2010, IEEE Computer Society, 2010, pp. 180–186.

[53] S. Gallenmüller, D. Scholz, H. Stubbe, G. Carle, The pos framework: a methodology and toolchain for reproducible network experiments, in: G. Carle,
J. Ott (Eds.), CoNEXT ’21: The 17th International Conference on Emerging Networking EXperiments and Technologies, Virtual Event, Munich, Germany,
December 7 - 10, 2021, ACM, 2021, pp. 259–266.

[54] G. Tene, HDRHistogram: A high dynamic range histogram, 2021, URL: http://hdrhistogram.org/, Last accessed: Feb 29, 2024.
20 

http://refhub.elsevier.com/S0166-5316(24)00047-6/sb14
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb14
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb14
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb15
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb15
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb15
http://arxiv.org/abs/2305.05455
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb17
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb17
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb17
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb18
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb18
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb18
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb19
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb19
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb19
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb20
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb20
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb20
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb21
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb21
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb21
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb22
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb23
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb23
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb23
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb24
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb24
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb24
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb25
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb25
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb25
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb25
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb25
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb26
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb27
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb27
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb27
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb28
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb28
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb28
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
https://access.redhat.com/sites/default/files/attachments/201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb30
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb30
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb30
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb30
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb30
https://www.dpdk.org/
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb32
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb32
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb32
http://dx.doi.org/10.1109/ISCA52012.2021.00014
http://dx.doi.org/10.1109/HPCS.2018.00064
http://dx.doi.org/10.1109/ICCONS.2017.8250619
https://github.com/intel/intel-cmt-cat
http://dx.doi.org/10.23919/DATE.2019.8715259
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb38
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb38
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb38
https://www.snort.org/
http://arxiv.org/abs/2012.11154
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb42
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb43
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb44
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb44
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb44
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb44
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb44
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb45
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb45
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb45
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb46
http://dx.doi.org/10.1017/S0305004100015681
http://dx.doi.org/10.1214/aos/1176343003
http://dx.doi.org/10.1214/aop/1176996548
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/56263-EPYC-performance-tuning-app-note.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/56263-EPYC-performance-tuning-app-note.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/56263-EPYC-performance-tuning-app-note.pdf
https://cdrdv2-public.intel.com/613875/613875_E810_Datasheet_Rev2.5.pdf
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb52
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb52
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb52
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb52
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb52
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb53
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb53
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb53
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb53
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb53
http://hdrhistogram.org/


F. Wiedner et al. Performance Evaluation 166 (2024) 102442 
[55] L. Santinelli, J. Morio, G. Dufour, D. Jacquemart, On the sustainability of the extreme value theory for WCET estimation, in: 14th International Workshop
on Worst-Case Execution Time Analysis, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[56] D.A. Dickey, W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc. 74 (366a) (1979) 427–431.
[57] D. Kwiatkowski, P.C. Phillips, P. Schmidt, Y. Shin, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that

economic time series have a unit root? J. Econometrics 54 (1–3) (1992) 159–178.
[58] R.L. Wasserstein, A.L. Schirm, N.A. Lazar, Moving to a world beyond ‘‘p<0.05’’, 73, (sup1) 2019, pp. 1–19,
[59] J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theory 37 (1) (1991) 145–151.
[60] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1) (1951) 79–86.
21 

http://refhub.elsevier.com/S0166-5316(24)00047-6/sb55
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb55
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb55
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb56
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb57
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb57
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb57
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb58
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb59
http://refhub.elsevier.com/S0166-5316(24)00047-6/sb60

	Performance evaluation of containers for low-latency packet processing in virtualized network environments
	Introduction
	Background and Related Work
	Containers and VMs
	Low-latency Applications
	Low-latency OS Optimizations
	Hardware-dependent optimizations
	Low-latency on container
	Tail-latency Behavior and Models

	Optimization Analysis
	Measurement Setup
	Evaluation
	Scenario
	Packet Rates
	Optimizations
	Container vs. VMs
	Container vs. Bare-metal
	L3 vs. L2 forwarding application
	User-space vs. Kernel-space Network Driver on Container

	Tail Latency Model
	Prerequisites
	Methodology
	Results

	Recommendations for Low-latency-sliced Applications
	Limitations
	Reproducibility
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


