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ARTICLE INFO ABSTRACT

Keywords: Edge Intelligence is expected to play a vital role in the evolution of 5G networks, empowering them with
Beyond 5G the capability to make real-time decisions regarding various allocations related to their management and
Sew‘cf‘éware service provisioning to end-users. This shift facilitates the transition from a network-aware approach, where
RAN slicing applications are developed to manage network quality fluctuations, to a service-aware network that self-
OpenAirInterface . C o . . . .

Kubernetes adjusts based on the hosted applications. In this paper, we design and implement a service-aware network
Machine Learning managed from the network edge. We utilize and assess various Machine Learning models to classify cellular
MLOps network traffic flows in the backhaul, aiming to predict their future impact on network load. Leveraging

these predictions, the network can proactively and autonomously reallocate slices in the Radio Access
Network via programmable APIs, ensuring the demands of the traffic-generating applications are met. The
approach integrates innovative MLOps methodologies for distributed and online training, enabling continuous
model refinement and adaptation to evolving network dynamics. Our framework was tested in a real-world
environment with realistic traffic scenarios, and the results were evaluated in real-time, down to a granularity
of 10ms. Our findings indicate that the network can swiftly adjust to traffic, providing users with slices
tailored to their application needs. Notably, our experiments show that under the studied settings, the users
experienced up to 4 times lower latency (jitter) and nearly 4 times higher throughput when interacting with
various applications, compared to the standard non-AI/ML unit. Furthermore, our dynamic scheme significantly
optimizes resource allocation, ensuring energy efficiency by avoiding over- and under-provisioning of resources.

1. Introduction The cornerstone for all these innovations is the wide softwarization

that has taken place in 5G and beyond networks; services that up to

Edge Intelligence is widely considered the key element for empow-
ering innovation and enabling the beyond 5G and future 6G networks to
meet their full potential. It is expected that within 6G, edge intelligence
will enable networks to achieve massive performance gains through
unique functions and services that take advantage of the close proxim-
ity to the Radio Access Network (RAN), while re-program the network
operation through the available APIs (e.g. O-RAN for the RAN). Artifi-
cial Intelligence is thus playing a major role in this context, allowing the
transformation from network observations to key decisions that affect
the overall system performance and reliability, even under high traffic
loads [1]. Such decisions are fortified through the Multi-access Edge
Computing (MEC) architecture, enabling low-latency applications to be
hosted over the network with traffic breaking out from the edge to any
Data Network (DN) [2].

the 4th generation were running as monolithic components, locked in
vendor-specific hardware, are currently able to be hosted over generic
hardware, running as software network functions. The components
have been further disaggregated, by specifying standardized interfaces
for their intercommunication, realizing a full Service Based Architec-
ture (SBA), capable of instantiating in a cloud-native manner. This
approach extends even for the cases of the RAN, for the higher level
functions of the base stations, that can be realized through software
functions placed on the edge/cloud, communicating with the Radio
Units through high capacity fronthaul links (Cloud-RAN) [3]. The
combination of all these features, empowered by Edge Intelligence,
creates fertile ground for introducing novel services that manage the
virtualized cellular network even in real-time/near-real-time.
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Network slicing is a fundamental concept in 5G networks. It refers
to the process of creating multiple virtual networks on top of a shared
physical infrastructure. Each “slice” is tailored to meet the specific
requirements of a particular service or application, ensuring optimal
performance and resource utilization. Although such innovations allow
the efficient provisioning of network service under one/more slices
with guarantees, usually it is up to the hosted applications to self-adapt
to the fluctuations of the network service. For example, in the case
of adaptive video streaming, protocols like DASH [4] might request
the specific content that can be served over the network, based on
the application perception of the network settings (e.g. capacity, jitter,
delay, etc.). The disaggregation of network functions, as it has been
standardized for 5G, enables the development of further key xApps that
can take advantage of the APIs, allowing the network to self-adapt
based on the applications that are hosted over the top, through the deci-
sions for allocation in the network. Such decisions are usually based on
the spectrum allocation (e.g. for Dynamic Spectrum Management [5]),
or slicing allocation. In this work, we deal with the slicing part of the
network, for automating the slice allocation of the network, based on
the services that run on top, thus creating a fully-fledged service-aware
network.

The development of such functionalities relies heavily on resource
disaggregation as defined for 5G networks. This disaggregation has
been standardized for different parts of the network (Control/Data
Plane and RAN/Core Network) as follows: (1) RAN disaggregation
for the base station stack, based on the eight different 3GPP defined
functional splits [6], and (2) control and user-plane disaggregation,
either at the Core Network side through the adoption of SBA, or the
RAN, through the adoption of architectures like O-RAN. In the O-RAN
architecture, applications hosted on top at the edge of the network
(xApps [7]) can retrieve statistics of the base station stack through
standardized interfaces and analyze them for inferring features like
network load, energy consumption, etc. Based on this inference, they
can enforce policies regarding slice allocation and scheduling to ensure
the smooth operation of the network. The inference relies on Machine
Learning (ML) models, that can predict the future evolution of the
monitored features/parameters, and thus apply pro-actively the target
allocations. The O-RAN architecture can be further enhanced with the
Network Data Analytics Function (NWDAF) which is standardized by
3GPP. NWDAF is a network-aware function that collects data from the
5G core and provides statistics to support network automation. These
statistics can be employed by AI/ML models that run on RAN Intelligent
Controllers (RIC) and can provide forecasting and optimization of Key
Performance Indicators (KPIs) [8].

Leveraging Edge Intelligence, ML operations can be launched di-
rectly on the edge by taking advantage of several devices if needed in
an entirely distributed manner, making use of pipelines. In this work,
we design, develop, deploy and experimentally evaluate a service-
aware network model for beyond 5G networks. We use a cloud-native
network, with the entire stack (RAN and Core Network) being instanti-
ated through the Kubernetes framework. We develop all the necessary
extensions to support near-real-time (<10 ms) low-level monitoring of
the traffic exchanged over the network. On top, and towards enabling
accurate decisions for the slice allocations in the network, we use a
distributed Machine Learning (ML) model, able to classify in real-time
the traffic exchanged from the different users of the network and infer
the future connectivity needs that are needed from the applications.
The needs are in turn transformed into slice-allocation decisions for
the 5G network. Our ML models have been developed in a distributed
lightweight manner, allowing different parts of the training process
to be executed at/near the edge devices, where processing power is
usually limited. By decomposing the main model into lighter compo-
nents and making extended use of pipelines, we are able to instantiate
the framework at the edge and affect the wireless network allocations
directly from there, thus augmenting the network with edge-located
Intelligence.
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Our contributions are summarized as follows:

+ To develop a real-time classification model, hosted on the opera-
tor side of the network, recognizing the different applications that
run on top of the network.

+ To infer the future load and patterns of traffic from the different
traffic flows of the applications that are hosted on top of the
network.

» To decide on the slice allocation that is enforced in the network,
based on the foreseen needs of the applications.

» To determine the optimal approach for predicting the future
demand, from a set of different supervised ML models.

» To evaluate the developed scheme under real-world settings,
using real devices and realistic traffic scenarios in real-time.

The rest of the paper is organized as follows. Section 2 presents
our motivation, based on a recent literature review. Section 3 presents
our overall system architecture, detailing the different components and
their intercommunication, as well as an evaluation of the different
ML models that drive our final choices. In Section 4 we evaluate
our contributions and present our findings. Finally, in Section 6 we
conclude the paper and present some future directions.

2. Related work

The disaggregation of the telecommunications stack has been iden-
tified as one of the key enablers for flexibility, and further innovations
for the beyond 5G and future 6G networks. By taking advantage of
the disaggregation and existing approaches for an end-to-end SBA, the
telecom stack can be instantiated as cloud-native functions throughout
the resource continuum, thus allowing network operators to take ad-
vantage/extend existing approaches for VNF management, tailored to
network-specific characteristics. Several of the works in the relevant lit-
erature focus on managing the deployed components as VNFs, divided
mainly into the following categories: (1) Placement of the VNFs [16-
19], (2) load that they are receiving [20-22], and (3) scale of the
functions [23-25].

The most outstanding effort reflecting these architectural
approaches is the definition of the Open-RAN (O-RAN) specifications
[7]. O-RAN standardizes the interfaces for interacting in real-time,
near real-time, and non-real-time with different components of the
RAN stack, enabling the network to re-configure dynamically, based
on operator-defined policies. Opening up the programmability of the
RAN has created several opportunities for the integration of Artificial
Intelligence methods, which infer based on historical observations of
metrics on the future resource usage, and appropriately manage the
network services.

In the realm of RICs for telecommunication networks, several so-
lutions, both open-source and proprietary, are available. FlexRAN [26]
stands out as a flexible and programmable platform tailored for
Software-Defined Radio Access Networks (SD-RAN) and is compatible
with the open-source OpenAirlnterface (OAI) platform. Its successor,
FlexRIC [27], serves as a software development kit (SDK) designed for
next-generation SD-RANSs, allowing its customization in the functions
that the user needs to perform on the RAN. On the proprietary front,
Athena Orchestrator—O-RAN SMO & RIC [28] is an Al-driven platform
optimized for energy-saving management in 5G-ORAN compatible pri-
vate networks. Additionally, FlexSlice [29] introduces an innovative
approach, presenting flexible control logic topologies - centralized,
decentralized, and distributed — to refine the O-RAN architecture for
reduced control loop latency.

Different methods of Machine Learning are employed for the predic-
tion of different network metrics, depending on the metrics themselves
and their fluctuation to incoming load. For example, in [30], authors
present a conceptual model for 6G networks and show the use and role
of ML techniques in each layer of the model. Different ML methods
are examined for the different parts of the stack, including supervised
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Table 1
Comparison of state-of-the-art with our approach.
Works Approach Evaluation
[9] Open RAN for 6G networks focusing on modular traffic steering Highlighted modular approach and AI/ML benefits in simulations;
implementations. model lifecycle not discussed.
[10] A supervised ML approach for forecasting traffic load to evaluate energy Centers on model development and validation using real-world 5G
efficiency and OPEX savings in B5G networks. data, omitting live deployment details and lifecycle discussions.
[11] Uses Federated Learning to predict service-oriented KPIs for 5G network Proven in simulations to enhance KPI accuracy, ensure privacy, and
slices, addressing privacy and scalability challenges. cut communication costs. Highlights gaps in model lifecycle and
scalability discussions.
[12] A RAN runtime slicing system for flexible reactive slice customization in Prototype development demonstrated on OpenAirInterface and
5G networks, utilizing a runtime SDK for agile control application Mosaic5G platforms, focusing on system capabilities.
development.
[13] Online DRL for dynamic end-to-end network slicing, focusing on SLA Surpassed rule-based and DRL methods in resource efficiency and
satisfaction and resource optimization. SLA compliance in simulations. Omits new traffic adaptation,
real-world validation, and lifecycle management.
[14] Introduces PRSS for optimizing 5G network slicing with a two-stage Demonstrated efficiency through analytical and simulation results.
probabilistic model for resource estimation. Lacks details on deployment, handling new traffic patterns, and
model lifecycle management.
[15] Slices resource orchestration using ML techniques for dynamic slicing of Showcased better prediction and efficiency in simulations against
PRBs, admission control, and resource management. static and random slicing. Lacks real-world deployment details and
model lifecycle.
This work A fully cloud-native, service-aware real-time network slicing model Validated in a real-world environment; showcased superior latency

leveraging ML for traffic classification, mobility forecasting, and utilizes
MLOps for model lifecycle management with online and distributed

and throughput improvements. Emphasizes practical deployment with
a focus on adaptability and continuous optimization through a robust

training.

MLOps framework.

and unsupervised learning and Reinforcement Learning (RL). Regarding
supervised learning, they employed Deep Learning (DL) in a distributed
manner with the use of Federated Learning (FL). The application of
ML has opted in several works dealing with the characterization of
traffic exchanged over the network. For instance, in [31], the authors
classified the traffic according to application and bandwidth-related
features. Furthermore, the networking systems can identify factors that
affect the operation of the network (e.g. external traffic for DDoS
attacks) and appropriately employ the respective mechanisms for re-
inforcing the operation of the network (e.g. firewall operation, slicing
of traffic, etc.). For example, in [32], authors employ a federated
ML approach that can be ideally realized in networking switches,
towards detecting intrusions in the network by processing packets at
the bit level and at line-speed. In [33] authors use a non-parametric
approach for traffic classification, which can improve the classification
performance effectively by incorporating correlated information into
the classification process, using the nearest-neighbor approach. Their
approach demonstrates significant performance benefits from both the-
oretical and empirical perspectives in the literature. Authors in [34]
employ cluster analysis for the case of peer-to-peer networks that use
dynamic port numbers for the communication between participating
nodes. Their presented approach demonstrates how cluster analysis can
be used to effectively identify groups of traffic that are similar using
only transport layer statistics. Finally, surveys [35-38] organize the
different traffic classification techniques that have emerged in literature
for analyzing traffic based on either their headers, or the payload, and
whether it is encrypted or not.

Similarly, in [39] authors propose the adoption of ML for orches-
trating different tasks of 5G and beyond networks, such as massive
MIMO, heterogeneous network integration and spectrum access, en-
ergy harvesting, and others. In [9], authors introduce the concept of
xApps, running on top of the O-RAN architecture. These are network
management applications, that rely on statistics exposed from the stack
at different levels. Based on the decision time, xApps can be running
in near real-time or non-real-time fashion. In [10] Thantharate et al.
propose the ECO6G model, leveraging a Machine Learning approach to
forecast traffic load for improved energy efficiency and OPEX savings
in B5G networks. This research demonstrates that ECO6G significantly
outperforms traditional forecasting methods in energy savings, pre-
senting a vital step towards sustainable and cost-effective network
management.

Regarding the type of policies and enforced decisions, several works
deal solely with allocating resources for slicing the 5G network. In [11],
authors employ Federated Learning as a means of predicting the evo-
lution of each KPI in a per-service manner. Subsequently, they allocate
the slices in the network. In [12], similar functionality is suggested,
using the FlexRAN controller for reactively enforcing decisions re-
garding the network operation. Nevertheless, truly online training and
decision-making in such systems pose a significant challenge, as model
training can consume slice resources. Authors in [13] propose their
solution for combating such issues with an online end-to-end network
slicing system, able to achieve minimal resource usage while satisfying
slices’ Slice Level Agreements (SLAs). In [14] the Probabilistic Intra-
slice Resource Service Scheduling (PRSS) algorithm is introduced to
optimize 5G network resource allocation. Designed in two stages—
service throughput estimation via a multinomial probabilistic model
and dynamic conditional resource estimation for new services. Its
efficiency is demonstrated through analytical and simulation results,
showcasing its capability to efficiently manage 5G network resources.

In this work, we developed a solution for enhancing the network
operation with intelligence, based on the type of services hosted over
the top. By employing a service classifier, we were able to determine in
real-time the type of application running on the top and decide on the
allocation of slices over the network in almost real-time. Moreover, our
research stands out by implementing a thorough MLOps strategy, con-
trary to numerous previous studies that deploy deep learning models on
fixed datasets, neglecting the emergence of new data patterns and the
ongoing management of the model. To clarify our pivotal contributions
within Table 1, we present a suite of innovative advancements that
distinguish our research from existing state-of-the-art solutions:

Leveraged the OpenAirlnterface platform (OAI) for the RAN and
Core Network, running in a cloud-native disaggregated manner
using micro-services.

Utilized programmable attenuators connected to the RAN to sim-
ulate realistic mobility scenarios.

Implemented a custom NWDAF, enriching the dataset with met-
rics (throughput, jitter, CQIs) for enhanced traffic analytics and
mobility insights.

Used supervised learning to forecast various features and evalu-
ated the solution with 6 different neural networks.
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Fig. 1. Experimental setup—The deployment of cloud native-Al 5G network on Kubernetes.

+ Introduced and evaluated an MLOps architecture that leverages
cloud/edge computing in the resource continuum for Online and
Distributed Training among cluster nodes.

+ Evaluated the framework in a real-world setup with commer-
cial UEs connecting to the network, generating realistic traffic
patterns.

3. System architecture

Our experimental setup consists of a cloud-native disaggregated 5G
network fully deployed on the Kubernetes framework. This way, we
take advantage of the multiple benefits provided by an application
container orchestrator like Kubernetes, such as the management and
monitoring of resources and dynamic scaling of the 5G VNFs. The
5G network is enriched by a novel distributed AI/ML unit for con-
tinuous distributed training-prediction and slicing. Fig. 1 summarizes
the framework’s architecture, showing the deployment of the service-
based 5G network, the introduced distributed AI/ML unit, and the
internet applications that the end-users interact with. We deploy the
framework in the NITOS testbed [40], a remotely accessible facility
located at the University of Thessaly, Greece. NITOS testbed provides
Software Defined Radios (SDRs), User Equipment (UE) terminals, and
programmable attenuators. All these devices are utilized to develop
our solution in a real-world environment. Below, we list the essential
elements of our Al network slicing solution that enables provisioning
high QoS and continuously user-perceived high QoE.

3.1. Management and deployment of the network functions

Our telecom network follows a serviced-based architecture which
consists of containerized network functions. The containerized de-
ployment relies on the open-source OpenAirlnterface platform. We
specifically leverage the LTE implementation of the OAI platform,
opting for its stability and mature RAN slicing support for multiple
User Equipment (UEs), a feature not yet fully developed in the cur-
rent OAI 5G NR implementation. Despite this, our solution seamlessly
integrates with 5G architecture, requiring minimal adjustments to the
overall framework. For instance, substituting the LTE Evolved Packet
Core (EPC) with 5G core network components (HSS/UDM, MME/AMF,
SPGW-U/UPF, SPGW-C/SMF) and transitioning from a disaggregated
eNB to a disaggregated gNB can be achieved effortlessly. It is worth
noting that our approach to the LTE Evolved Packet Core (EPC) involves
the use of Control and User-Plane Separation (CUPS), allowing each
component to operate in isolation. Our work focuses on RAN-level
allocations, utilizing interfaces envisaged for 6G network operation,

such as the O-RAN E2. Notably, our solution remains independent
of dedicated slicing components from the 5G architecture, like the
Network Slice Selection Function (NSSF). The key distinction with the
5G RAN lies in the absence of full slicing support, with the primary
difference being the data rate rather than core functionalities. For the
experimental evaluation of our architecture, we created a cluster of
three NITOS nodes as Kubernetes workers, while the control-plane node
was running on a separate VM. Below, we analyze our cloud-native
approach for the deployment of the network functions down from the
core network, up to the end-user.

3.1.1. Service-based core network

The core network architecture follows control and user-plane sep-
aration (CUPS). Consequently, each function runs as a separate pod/
container providing: a Cassandra database that holds the subscriptions,
the Home Subscriber Service (HSS), the Mobility Management Entity
(MME), the control plane Service/PDN Gateway (SPGW-C), and the
respective user plane service (SPGW-U). Since there is not yet an open-
source implementation of the NWDAF we developed a customized
function named Core RAN Analytics Function (CRAF). CRAF plays the
same role as NWDAF in our architecture. It collects traffic statistics
from application interactions and KPI network metrics such as Through-
put, Jitter, and the CQI. After the collection of the data, CRAF stores
them in a database. Then, our AI/ML framework performs feature
extraction and preprocesses the data for the model training.

The fact that the individual core network components run separately
as micro-services allows us to easily monitor their status and their con-
sumption in terms of memory, CPU, and bandwidth. The deployment
of the core network is distributed to all Kubernetes workers ensur-
ing the load balancing between them. The connectivity between the
containerized core network and the Radio Access Network is realized
by the Multus Container Network Interface (CNI). Multus CNI allows
us to provide multiple interfaces to pods and create static network
configurations for easy reproducibility of the experiments.

3.1.2. Disaggregated RAN

The containerized Radio Access Network (RAN) follows a disag-
gregated architecture including the CU and DU (Central & Distributed
Unit) components. This distributed scheme implements the functional
split of the base station. Specifically, the split takes place in the layer
2 OSI stack, between Packet Data Convergence Protocol (PDCP) and
Radio Link Control (RLC) layers. The CU integrates the upper layers,
while the DU integrates the lower layers (from the RLC and below).
The communication between CU and DU is based on the F1 Application
via the F1 interface. The CU container can be deployed in any of the
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Kubernetes nodes from our cluster, contrary to the DU pod that needs to
be deployed on a specific node equipped with the appropriate SDR front
device. In the SDR device, a programmable attenuator is connected,
with which we attenuate the signal of the RF device, in order to create
realistic mobility scenarios.

To obtain RAN statistics such as CQI and to create network slices on
demand, we utilize the FlexRAN network controller. FlexRAN provides
flexible and efficient resource allocation and by this time of writing,
is the most stable open-source solution for RAN slicing. We connect
the FlexRAN controller to the RAN via the FlexRAN agent running on
the CU/DU side. FlexRAN is also connected to the CRAF and AI/ML
unit ambiguously for the transmission of the RAN statistics and to the
establishment of the slicing policies.

3.1.3. End-users & Internet applications

To evaluate the network connectivity and collect traffic data, we
connected 3 UEs to the network interacting with 3 containerized appli-
cations on the internet. The mobile equipment includes commercial UEs
by utilizing LTE dongles. The applications include a video streaming
service, a VoIP application, and an Nginx web server. The reason
for choosing these services is to classify their network needs into
data-hungry applications such as video streaming, medium data-rate
applications such as VoIP, and low data-rate applications such as simple
web-server. The video streaming service streams video capture devices
by utilizing the webRTC protocol as it provides real-time communica-
tion over the web. The VoIP service is an application called SiPp that
employs Session Initiation Protocol (SIP) for VoIP packet transferring.
The Nginx web server is employed for the generation of HTTP requests.
All services are containerized and deployed onto the same Kubernetes
cluster. This allows us, to deploy them among the SPGW pods on the
Node with the SDR device to provide an edge computing approach.
Finally, the traffic can be captured and fed to the CRAF, directly from
the SGi interface of the data-plane network.

3.2. Application-aware AI/ML unit

Developing an efficient AI/ML unit, aware of the network conditions
that coordinates the resources optimally requires considering a lot of
parameters. Our approach captures a large number of features, essential
for the slicing decision, including the applications used by every UE, the
Throughput, and the Channel Quality, among many others. Noticeably,
the model receives an input window of multiple time slots, with these
features, which represent the network traffic exchanges between the
UEs and the applications in the near past. Thus, the model identifies
the pattern in the traffic and predicts future values. Our goal is to
come up with a robust unit that analyzes the overall network condi-
tions thoroughly and employs a superior slicing allocation algorithm,
leading, this way, to a network performance peak. Below, we provide
information on the whole procedure of choosing the proper features,
designing an effective traffic classification scheme, creating real-world
network traffic scenarios in the experimental environment, collecting
data, training multiple models, and developing a novel near real-time
slicing allocation scheme.

3.2.1. Feature selection

Designing a powerful AI/ML model, aware of the plethora of com-
ponents in a network architecture requires a cautious feature selection.
Thus, we pick many features to capture the largest possible variance
that explains the pattern underlying the traffic exchanges between the
UEs and the applications (apps). Precisely, our features’ list consists of
the Applications, the Throughput, the CQI, the Jitter and the allocated
Slices, for every UE of the network. First, the Application/Service is
a principal component of a service-aware implementation capturing
which specific service is used by every UE. This feature indicates the
service’s type, demand, and significance. Importantly, for every UE, we
keep one feature for every application provided by the network; in our
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case, there are 3 app-features (WebRTC, SIPp and Nginx). Further, the
experienced service Throughput provides essential information about
the bandwidth of the UE-App link. Another vital feature is the CQI that
represents the LTE channel quality, which demonstrates the quality of
the UE connection; indicating a great or poor connection. Moreover,
the Jitter monitoring per UE depicts the timing delays between the UE’s
packets, while the Slices show the allocated resource blocks of every UE.

3.2.2. Traffic classification

For traffic classification, we divide the timeline of every experiment
into multiple time slots of a fixed length, in which we gather the desired
network information with the aforementioned features. Importantly,
the information in every time slot is organized in a specific structure.
We divide every time slot into multiple UE categories as shown in
Fig. 2. This way, the information for every UE is gathered in one
category. In our case, there are 6 different features for every UE
category, namely WebRTC, Sipp, Nginx, CQI, Jitter and Slice. The first
three features represent the network Services that the UE is able to use.
Noticeably, their values represent the Throughput of the specific UE
with the specific service. For instance, a value of 10 in the WebRTC
feature in the first category (UE 1) is translated as 10 Mbps network
traffic on the UE 1 using the WebRTC service. The remaining features
of every category, namely CQI, Jitter and Slice provide additional
information on the quality of the UE connection as well as its allocated
resources. As a result, we end up with a number of columns that is
proportional to the number of UEs multiplied by the number of features
per category; in our case, 3 UEs multiplied by 6 features equals 18
total columns (real features for the model) for every time slot. This is
illustrated in Fig. 2, where every column of the tables is a feature and
every row is a time slot.

This way, we organize the monitored network traffic into a useful
structure to be used by a model. Precisely, the time slot length is config-
ured to the desired number, for instance, 100 ms. Subsequently, during
every slot, we gather all the received packets and extract the essential
information. Firstly, we read the packets’ IP/Transport protocols to
classify them to the appropriate UE-App combination. Then, we count
the total number of bytes of all packets received during the time slot for
every UE-App link to calculate the Throughput. This way, we classify
the captured traffic during a time slot to the appropriate columns. Next,
we compute the mean Jitter value between the total packets of every
UE in the time slot. On top of that, a CQI value per UE is requested from
the FlexRAN Agent existing in the LTE DU, and finally, the currently
allocated UE slices are recorded as well. For a better understanding, let
us focus on Fig. 2 in the first row of the third input window (i = 2).
The first 6 values corresponding to the category of the UE 1 are:

(A,B,C,D,E,F)=(10,0,0,14,1,8)

Interpreting this category, we understand that the UE 1 has 10 Mbps
network traffic only with the WebRTC service, an LTE CQI of 14, 1 ms
average Jitter, and allocates a slice of only 8% of the overall network
resources.

3.2.3. Real-world traffic scenarios

We emulate realistic network behavior in an office by developing
multiple network traffic scenarios. Our goal is to emulate inside our
experimental infrastructure the network patterns observed in an office
on a specific time interval of a usual day. We aim at specific time
intervals and not the whole day since our resources are limited. Most
users in an office are expected to have a basic pattern in their behavior.
For example, one user might mainly utilize video streaming platforms,
whereas another one is constantly on calls with clients. Thus, the AI/ML
unit captures this pattern and enhances users’ overall experience by
sharing the network resources on demand. As a first step towards
emulating this office behavior, we create some baseline traffic scenarios
for every UE in our network (one bash script per UE specifying a
particular behavior) as shown in Fig. 3. These scenarios are based on
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Fig. 3. Users’ network traffic baseline scenarios depicting network traffic at a specific
time interval during the day.

real network patterns observed at a specific time interval during the
day (early morning from 10:00 AM to 11:00 AM) on users in our
office facilities in Volos, Greece. However, we redesign them to be
small with a duration of approx. 150-160 s to facilitate the whole
experimental procedure on the testbed. This way, we create the basic
pattern that is observed in our office at that specific time interval.
However, this is not the exact behavior every day since it will slightly
change from one day to the other even if the underlying pattern is
the same. For example, the employee who works mainly on the phone
will not make the same number of calls or calls of the same duration
every day, but he/she will mainly work on the phone with clients. To
emulate these slight variations in the UE behaviors from day to day,
we employ data augmentation techniques. Specifically, based on the
baseline scenarios, we add Additive White Gaussian Noise (AWGN)
in the number, sequence, starting time, and duration of the utilized
applications by a UE to represent the differences from one day to the
other. For instance, the UE 3 in Fig. 3 uses the WebRTC app one time
starting at 50 s for a duration of 50 s. It also uses the NGINX app three
times in total each starting at about 20, 45, and 100 s for a duration of
10, 5, and 50 s respectively. At first, AWGN from the standard normal
distribution with a mean of 0 and a standard deviation (sd) of 1 is added
to the number of times that an app is used. Regarding UE 3, this means
that the number of times that the WebRTC and NGINX are utilized will
either not change or increase/decrease up to a maximum of 3 times
(3 standard deviations from the mean). Then according to the new
numbers we add the new apps or delete the unnecessary ones randomly.
Subsequently, we use the same distribution to choose randomly several
apps (up to three) and change their position in the timeline. Then,
AWGN from a different distribution (mean of 0, sd of 10) is added to
change the starting time of each app up to a maximum of 30 s (3 sd
from mean). After that, AWGN from the same distribution is inserted to
change the duration of each app increasing or decreasing it by a margin
(up to 30 s - 3 sd from mean). At every step, we adjust accordingly the
position of the apps in order to avoid interference.
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Fig. 4. Attenuation scenario emulating UE mobility in office.

Moreover, several scenarios are reversed to augment the dataset
further and a lot of them are slightly cropped for efficient training.
Further but minor noise is inserted when we collect the data from the
testbed due to hardware imperfections. Thus, we create a plethora of
network traffic scenarios for every UE that inherit the baseline pattern
but are slightly modified capturing a large spectrum of the office’s real
traffic at that specific time interval. Hence, there is a large variance to
build robust AI methods, capable of generalizing, not over-fitting, and
being resilient to noise and fluctuations.

3.2.4. UE mobility emulation

In a real network, the quality of the UE connection varies according
to the geographical location of the UE. Specifically, in areas with good
LTE coverage the CQI that depicts the LTE channel quality, is high,
in contrast with areas where there is poor LTE coverage (low CQI). In
order to emulate this behavior in our experiment we use programmable
attenuators installed on the outputs of the USRP, as presented in Fig. 1.
Specifically, by modifying the attenuation of the USRP radios, we
can emulate transitions from low to high CQI values and vice versa.
The attenuation is inversely proportional to the CQI (high attenuation
causes low CQI and the opposite). Importantly, we possess attenuation
scenarios from real commercial networks in Volos, Greece. Specifically,
these attenuation scenarios emulate cars traveling a specific city route
with velocities that vary from 40 to 60 km/h with the road’s limit being
50 km/h. These car scenarios were used to collect 182500 CQI data from
73 cars capturing a large spectrum of the route’s traffic. The CQI data
are publicly available [41]. We decide to utilize the same attenuation
scenarios to emulate mobility to the office users since it is a similar
problem (users moving in a specific geographical area) and moreover,
because it is a dataset with a large variance that could lead to efficient
training and generalization of the models. Fig. 4 depicts an attenuation
pattern used, where at the beginning of the experiment the attenuation
is low (high CQI). Following that, the attenuation rises substantially
(low CQI), while at the end of the experiment, the attenuation returns
to low levels (high CQI).

3.2.5. Data collection

To collect a lot of training examples for our model, we execute
all the scenarios in the testbed. In specific, we pick at random one of
the traffic scenarios (office users’ pattern) and one of the attenuation
scenarios (mobility pattern) and execute them concurrently. This way,
we assign a different combination of office traffic and mobility patterns
to each experiment. Meanwhile, by employing the traffic classification
scheme with a time-slot duration of 1 s, the network traffic is appro-
priately classified and subsequently stored in the database. This is done
for 300 experiments (each lasts approx 150-160 s) creating, as a result,
a massive dataset with 48 600 rows and 18 columns. This dataset is also
publicly available [42].
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Fig. 5. Example of sliding-window scheme.

3.2.6. Pre-processing

Before feeding the data into the models, we need to preprocess
them appropriately. First, we normalize the whole dataset adjusting
all the columns in one common range between 0 and 1. This way, we
avoid scale imbalances strengthening the model’s training efficiency.
Subsequently, Fig. 2 illustrates clearly our pre-processing technique. In
specific, we utilize a sliding-window approach which creates a 2D input
window (X;) of fixed shape ([N time slots, ¢;, features]) and slides
it by one-time slot over the whole dataset to create multiple samples
(i = 0,i = 1,i = 2). Meanwhile, for every X; sample, the algorithm
captures a second 1D output window (y;) with shape [1, ¢,,, features],
which depicts the data that we want to predict (labels) The data of
every 1D window (y;) are located immediately after that of the 2D
window (X;) in the dataset representing the future. Noticeably, the
values of each y; could be that of only one-time slot (the following
of the X,) or the mean values of an arbitrary number of time slots
following the X;. For example, we provide a dataset with shape [5,2]
in Fig. 5 Given that we want to pick X; windows with a length of
2-time slots, the first input sample (X,;) would be the first two rows.
For the corresponding prediction-output window y; there are a lot of
choices depending on the number of future time slots that we want
to predict. For instance, to predict one future time slot, the y; would
be the third row. On the other side, to predict multiple future time
slots, one efficient solution is to obtain the average values of their
columns. Fig. 5 demonstrates examples for predictions of 1, 2, and 3
future time slots: For the following X;, y; samples, we slide by one-
time slot and apply the same procedure until we reach the end of the
dataset. In our case, as shown in Fig. 2, after extensive experimentation
we conclude on calculating X; windows with shape [30,18] and y;
vectors of shape [1,15] predicting the average values of five future
time slots. The general rule for finding the optimal window shapes
is that the X; windows should be sufficiently large to capture the
pattern in the near past but small enough to boost model training
and avoid the exploding/vanishing gradient problem when Recurrent
Neural Networks (RNNs) are used. Regarding the number of future time
slots for prediction, it is generally good to employ multiple future time-
slots to smooth possible fluctuations, but not too many of them so as to
present an accurate figure of the near future. Using this technique, we
structure the data in X; samples of shape [48 566, 30, 18] and y; samples
of shape [48 566, 15].

3.2.7. Neural network models

This work focuses on supervised learning approaches and specifi-
cally, on evaluating various deep learning methods. We focus on neural
networks as they are generally more robust at handling huge datasets
and more resilient to noise compared to statistical and tree-based
methods. Our goal is to design a robust Neural Network (NN) that
converges on the pattern fast and accurately in order to be used for real-
time forecasting implementation. Hence, we explore many different NN
structures and finally conclude on some of the most promising ones and
provide their specifications in Table 2.

Firstly, we choose a Feed-forward NN (FNN) due to its simplicity
by just moving the information forward from the input to the hidden
and to the output layers resulting in faster training. Subsequently, we
move to more sophisticated architectures, the Recurrent NNs (RNNs),
which employ memory components and are widely utilized in Time
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Series Forecasting (TSF). Precisely, Long short-term Memory (LSTM)
NN are very robust at dealing with the vanishing/exploding gradients
issue using three gates (input, output, and forget gates) and thus,
they often outcompete simpler RNNs. Following that, we extend the
simple LSTM by inserting a Bidirectional layer (Bi-LSTMs). This way,
the model analyzes both the original sequences and their reversed
versions, obtaining information from the past and also the future,
usually resulting in enhanced forecasting performance. After that, we
analyze Gated Recurrent Units (GRUs) NNs, another widely used RNN,
that achieves similar predictive performance with LSTMs. In fact, GRU
is equipped with fewer gates (reset and update gates) and hence,
requires fewer training parameters leading to faster training. Then,
we build a Convolutional NN (CNN) that is powerful at efficiently
extracting features, dealing with noise, reducing the dimensions, and
calculating non-linear functions in data by employing kernel filters,
pooling layers, and fully-connected layers. Consequently, they often
result in more accurate and fast training. Further, we experiment
with a hybrid CNN-LSTM that obtains the best from both worlds by
forming an Encoder-Decoder architecture. In specific, the CNN part
implements feature extraction, noise, and dimensionality reduction and
subsequently passes the processed information to the LSTM, which
captures the pattern in data using memory components. This way, the
result is a prominent model with remarkable predictive and training
performance.

3.2.8. Slicing allocation mechanism
The slicing allocation algorithm is designed to provide the network
resources on demand and fairly to maximize the Quality of Experience
(QoE) of the UEs. To achieve that we share the available network
resource blocks based on a mathematical formula that consists of many
criteria obtained from the model predictions. Precisely, the type of the
application (C)), the total Throughput of the UE (C,), the CQI (C3), and
the Jitter (C,):
4
Slice(%) = Y (w,C;) + wy, €h)
i=1
where w;, w,, ws, w, are the weights of every criterion indicating its
importance and wj, is a constant term representing the minimum value
of the slice.
Each criterion (C;) is assigned a priority value (0, 1, or 2), signifying
low, medium, or high importance, respectively. For example:

For UE application (C;), WebRTC is given the highest prior-
ity (2), followed by SIPp and Nginx with priorities 1 and 0
correspondingly.

Throughput (C,) is classified as high demand (2) for values above
0.4 Mbps, medium demand (1) for values between 0.2 and 0.4
Mbps, and minor demand (0) for values below 0.2 Mbps.

CQI values (C;) falling between 0 to 9 are high priority (2), 9 to
11 are medium priority (1), and above 11 are low priority (0).
Jitter values (C4) of more than 10 ms are crucial (2), 5 to 10 ms
are medium priority (1), and less than 5 ms are low priority (0).

After experimenting with various slice configurations, we deter-
mined that in our experimental setup, maintaining a minimum slice
value of 8% is crucial to keep a User Equipment (UE) connected to the
network. Any value below this threshold results in UE disconnection,
prompting us to establish 8% as the designated minimum slice value
(wg). Additionally, we observed that UEs achieve their optimal perfor-
mance when allocated a slice of 40%. Beyond this value, there is no
discernible increase in connection efficiency. Consequently, we selected
40% as the maximum slice value. This maximum value is determined
when all criteria in Eq. (1) have the highest priority:

40=w X2+ wy, X2+ w3 X2+wyX2+8
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Table 2
Neural networks configuration.
Layers Hidden layers Epochs
GRU 2 GRU + Dense 25 units per layer 61
LSTM 2 LSTM + Dense 25 units per layer 97
Bi-LSTM 2 Bi-LSTM + Dense 25 units per layer 56
FNN 2 Dense + output Dense 25 units per layer 568
CNN ConvlD + MaxPoolinglD + Flatten + Dense + filters = 64, kernel size = 2, pool size = 2, 50 264
Dense (output) Dense units
CNN-LSTM ConvlD + MaxPoolinglD + Flatten + RepeatVector filters = 64, kernel size = 3, pool size = 2, 24

+ 2 LSTM + Dense (output)

repetition factor = 1, 25 units per LSTM layer

Table 3
Examples of UE slices assigning the priorities to each criterion (C;) based on
forecasting.

Forecasting UE 1 UE 2 UE 3
Application Nginx SIPp WebRTC
Throughput (Mbps) 0.1 0.3 2
cQI 14 10 6
Jitter (ms) 2 8 12
Criterion UE 1 UE 2 UE 3
C 0 1 2

c, 0 1 2

c 0 1 2

C, 0 1 2
Slice (%) 8 24 40

In our study, we assigned equal importance to each criterion, re-
flected in identical weight values for w;, w,, ws, wy, all calculated as 4.
Consequently, the slicing equation simplifies to:

4
Slice (%) =4 Z C +8 @)
i=1

Various strategies can be implemented by assigning different
weights to individual criteria based on specific objectives. For instance,
prioritizing Ultra-reliable Low Latency Communications (URLLC)
would involve assigning a higher weight to the Jitter criterion (C,). This
adjustment enhances the slice allocation sensitivity to Jitter, ensuring
that more resources are allocated to UEs experiencing Jitter fluctua-
tions. Alternatively, assigning greater weight to Throughput (C,) could
strengthen support for Enhanced Mobile Broadband (eMBB), while
an emphasis on the weight of CQI (C;) would focus on maintaining
a stable, high-quality connection. Similarly, allocating more weight
to Application (C,) would result in additional resources based on the
application type rather than the quality of the connection.

In our case, we choose an equal weight to all criteria to evaluate the
algorithm’s general efficiency as a first step. Future works will focus
on specific use cases. Table 3 adduces examples of the slicing alloca-
tion algorithm for further understanding. For instance, the forecasting
regarding the UE 1 indicates that the Nginx app will be utilized with
0.1 Mbps Throughput, a CQI of 14, and a Jitter of 2 ms. All these
values correspond to the lowest priority (0) of each criterion (C;) and
thus, the calculated slice is the lowest, 8%. At UE 2 and 3, all criteria
have medium and maximum priority leading to a slice of 24% and 40%
respectively.

When the total slices of the UEs are calculated more than 100%, we
subtract an equal proportion of every slice. Overall, the UE receives the
appropriate amount of resources depending on the network conditions
without under or over-provisioning. In general, this scheme could be
adapted to individual preferences. First, further criteria could be added
or some of them could be excluded. Secondly, the weights could be
adjusted on the individual preferences to target specific use cases.
Additionally, the minimum and maximum values of the UE slice could
be modified. Finally, this Eq. is a linear relationship between the
criteria and the slice, and thus in the future, it could be replaced by
a non-linear function calculated by an ML model.

3.3. MLOps AI-ML unit architecture

To ensure that our model adjusts to the training data’s gradual
drift, we employ an online/distributed training architecture realized
by a Kubeflow pipeline. Kubeflow is an open-source AI/ML toolkit that
utilizes the power of Kubernetes to run ML jobs and supports the entire
lifecycle of ML applications. In Kubeflow, a pipeline is a description
of an ML workflow that includes containerized components, each of
which represents a single step in the process. Each element is managed
as a microservice, with all the expected declarative definitions (YAML
manifests). This, enables them to be quickly deployed and scaled out as
required. By employing Kubeflow [43] pipelines we can easily orches-
trate, scale, and automate our Al solution. This MLOps - Distributed
Architecture is presented in Fig. 6. First, CRAF monitors all the traffic
from the SGi interface by utilizing PyShark [44]. In order for CRAF to
collect the traffic in real-time, we use the LiveCapture class of PyShark.
CRAF also obtains all the CQI values in real-time, via HTTP requests
from the FlexRAN controller. Then, after applying network filters to the
traffic (IPs/Ports), it classifies the interactions per UE and application
and calculates traffic analytics such us Throughput and Jitter. To avoid
big data over time, CRAF only keeps the summary of each packet such
as the UE, the Application, the Length, the Jitter, and the CQI value that
each UE experiences. Subsequently, this data is stored on a database
running on a MySQL server that is backed with NFS persistent storage
via PersistentVolume, providing consistency and availability of data
between Kubernetes Nodes. Next, the Kubeflow pipeline takes place,
as the first step: the Data Parser extracts the features from the database
and creates a new dataset. Then, the next pipeline component, the Data
Preprocessing applies the sliding window approach to the data and
stores them in a multi-dimensional array. Afterward, this newly shaped
array is passed to the last step of the pipeline, the Training component.
The construction, and the training of the model, are implemented in
this final step. After the train finishes the new model is saved on the
NFS as an HDF5 file via the mounted Persistent Volume that is attached
to the container. This way, the Predictor Service can obtain and utilize
the updated model as it has access to distributed storage as well. As
a result, the Predictor pod can make live predictions for near future
traffic with higher accuracy, as the model is trained with the data with
the most recent interactions and the latest network conditions.

To calculate the overhead of our solution we rely on the Eq. (3).
It is the total time that is needed per slice allocation. All the metrics
are measured with the help of timeit python module. The first metric,
tcrar» 1S the total time for CRAF to obtain traffic and RAN analytics in
one iteration. We measured that 7z 4 is almost real-time: 1-6 ms. The
time needed for slice allocation 7,,,,, is also in the same real-time range.
This seems reasonable since CRAF employs PyShark for live packet
capturing and FlexRAN for RAN statistics, which operates in real-time.
Also, the overhead of each prediction (7,,,,) is 1.6 ms. Finally, the
catalytic factor of Eq. plays the time slot per X; observation described
by t,,;- We choose to observe X; every 1 s to get a better picture and
capture the patterns. However, the time slot is a hyperparameter that
can be changed. The smaller it becomes, the faster the slice allocations,
with the only tradeoff being the efficiency of the predictions.

Slicetime = ICRAF + tslol + tpred + lapply (3)
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The pipeline can be triggered by the Predictor Service periodically
with a timer or each time the predicted data is less accurate than
a predefined threshold. This can indicate that the new data that is
fitted into the model has different traffic patterns than the data that
the model has been trained with. In that case, an algorithm 1 is
suggested. As long as the accuracy (R-squared) of the forecasts is high,
the slice decisions defined by the slicing Eq. (1) can be determined by
the predictions. Otherwise, if the accuracy is lower than the accuracy
threshold, then the slice decisions will be reactively determined by the
slicing Eq. directly. The tradeoff in this approach is the fact that in
the middle of the train of the updated model, we might lose some
important interactions of the users with the applications as well as the
new patterns of the network conditions (e.g. low CQI values). However,
based on our experiments this algorithm can converge on new traffic
patterns over time as the accuracy remains at constant-high percentages
from one point onwards.

Algorithm 1: Online Train/Predict [Predictor Service]

Function model_select (pipeline_name, accuracy_threshold):
train_flag = 0;
while True do
traf fic_data = get_traffic_data();
accuracy = get_accuracy_of_predictions();
if train_flag == 0 then
if accuracy > accuracy_threshold then
model = get_model();
yhat = model. predict(traf fic_data)
store_predictions(yhar)
slice_perc = slice_desicion(yhar)
else
slice_perc = sclice_desicion(iraf fic_data)
train_flag = 1
trigger_pipeline(pipeline_name)

end
end
else
slice_perc = slice_decision(traf fic_data)
if status.pipeline() == True then
train_flag =0
‘ accuracy = MAX_ACCURACY

end

end
End Function

Towards aiming to reduce training time as much as possible and
to distribute the training load evenly in the Kubernetes cluster, we
enrich our architecture by employing Distributed training using Kube-
flow’s TensorFlow operator. With the TensorFlow operator, we can
run distributed TensorFlow jobs (TF jobs) in our Kubernetes cluster
as illustrated in Fig. 7. A distributed TF job is the collection of the
following processes:

« Chief: Is responsible for orchestrating the training process

+ PS: Parameter Servers provide a distributed data storage for the
model parameters and perform gradient updates.

» Worker: The workers do the actual work of training the model.

Kubeflow handles the above processes by passing the Kubernetes
cluster configuration as an environment variable to the TF jobs. We
only define distributed strategies into our code for synchronous train-
ing based on the all-reduce algorithm or for asynchronous training
via parameter server. In our experiments, we choose Multi-Worker
with All-Reduce strategy and RING communication as it supports syn-
chronous training, without suffering from bottleneck communications,
contrary to the parameter server asynchronous training [45]. The distri-
bution scheme can be further extended by describing the training job
with a custom YAML file that references the TFJob Custom Resource
Definition (CRD). In this way, we can scale our training process into
multiple pods that will train the model in a distributed fashion taking
advantage of the total resources of the cluster.
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4. Evaluation
4.1. Model comparison

The models’ offline training and evaluation are taking place on
Google Colab where non-subscription TPUs are used. The concluded/
optimal model structures are analyzed in Table 2. To evaluate them,
we employ Time-Series Cross Validation (CV), a technique similar to
K-fold CV but designed to respect the time sequence. We split the
pre-processed data (48566 X;, y; samples) into several folds of equal
size (500 samples) and create two sets; the training and the testing
one. At first, we initialize the training set with multiple serial folds
following the timeline (32 000 samples - data of about 200 experiments).
On every iteration (i), the model is trained on the training set and
uses the next fold on the timeline as a testing set to calculate the
generalization error on unseen data. In the following iteration, the
training set is increased by one fold following the timeline, and the
next one is used for a new evaluation. In the end, the mean of all
testing errors (data from about. 100 experiments) is calculated as the
overall generalization error. As a second step, we pick each model and
integrate it into our experimental topology to evaluate its predictive
performance in realistic circumstances on our Testbed. The time-series
CV and Testbed’s experimental evaluations are shown in Fig. 11

As evaluation metrics, we employ the Mean Absolute Error (MAE)
and the Coefficient of Determination (R?). MAE finds the mean absolute
error between the predictions (¥;) and the labels. It is scale-dependent
helping us understand the forecasting error when studied together with
the data range and distribution. We calculate separate MAE values for
the predicted UE-App Throughput, UE Jitter, and UE CQI both for the
Time-Series CV and the Testbed’s experimental evaluation, as shown in
Fig. 11. Regarding Throughput, we observe a range of 0-800 kilobits
per second (kbps) with poor slicing and a range of 0—4 megabits per
second (Mbps) with maximum slicing when the utilized application is
the WebRTC. On the other hand, when Nginx and SIPp are used, the
range is between 0-300 kbps. Generally, the observed Throughput range
in our experiments is between 0—4 Mbps. Regarding Jitter, the observed
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Fig. 8. UE 1 QoE with and without the AI unit equipped with CNN-LSTM.

range is between 0-70 milliseconds (ms) depending on the link quality,
slice, and application. Moreover, CQI ranges from 0 to 15. Further, we
employ the R? metric, which calculates the proportion of total variation
of outcomes explained by the model. It is more intuitively informative
(percentage value) without the need to consider the data ranges.

In Fig. 11 all the models identify the pattern in data efficiently.
In specific, in Fig. 11(a) the models have time-series CV Throughput
MAE values that range from 5.04 to 5.82 kbps, while the respective
ones on the Testbed range from 2.07 to 3 kbps. These error values
are negligible when compared with the throughput range, which is
0—4 Mbps. Additionally, the NNs predict accurately the experimental
Jitters (Fig. 11(b)) reaching MAE values at just around 0.25 ms; very
minor when studied with the Jitter range of [0-70 ms]. Moreover,
regarding the CQI in 11(c), the models achieve exceptionally low
testing error with an average of 0.42 MAE considering that CQI ranges
from O to 15. Moreover, the evaluation utilizing the R> metric on the
time-series CV and on the experiments on the Testbed are shown in
Table 4. Overall, the NNs achieve substantial performances, with each
model being slightly better in forecasting different features. Impor-
tantly, there is a great discrepancy in their training time, as shown
in Fig. 11(d). The CNN-LSTM identifies quickly the patterns requiring
only 4 min, while the remaining models demand from 26 to 76 min.
The key enabler of CNN-LSTM’s training efficiency is its convolutional
(CNN) part. In specific, the CNN performs optimally feature extraction,
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Fig. 9. UE 2 QoE with and without the AI unit equipped with CNN-LSTM.

Table 4
R? evaluation of the neural networks.
FNN LSTM Bi-LSTM GRU CNN CNN-LSTM
Time-series CV R? 0.936  0.940  0.940 0.937  0.945  0.940
Experiment R? 0.985 0.986 0.987 0.986 0.987 0.986

noise, and dimensionality reduction. As a result, the LSTM part finds
smaller and better-structured sequences being able to converge on the
patterns in a faster way. Thus, we pick this algorithm and integrate
it into the AI/ML unit as it combines high predictive accuracy with
extremely low training time, being the most appropriate choice for our
implementation.

4.2. Experiment evaluation

Our real-world experiment on NITOS Testbed evaluates the impact
of the AI/ML unit using the CNN-LSTM model on the QoE of the UEs.
In Figs. 8-10, we include five different sub-figures for every UE. In
specific, the first two subplots (a,b) depict the utilized services, fol-
lowed by the experienced Jitter (c), then the CQI (d) and subsequently
the allocated slices (e) that were provided according to the dynamic
slicing allocation algorithm. Noticeably, we compare the resulted QoE
of the UEs between the guidance of the Al-unit and the default network
configuration. As a “default” configuration, we set all the UE’s slices to



T. Tsourdinis et al.

@ Al-unit default

s

s 4

= 3

2 2

5 1

g 0

£ 0 20 40 60 80 100 120 140 160
Time (sec)

(a) UE 3 interaction with WebRTC service
default Al-unit

Throughput (Mbps)
o
N

0 20 40 60 80 100 120 140 160

Time (sec)

(b) UE 3 interaction with Nginx service

default Al-unit
- 40
£ 30
= 20
£ 10
- 0
0 20 40 60 80 100 120 140 160
Time (sec)

(c) UE 3 experienced Jitter
16
il e
WY

0 20

cal
©

40 60 80 100 120 140 160

Time (sec)

(d) UE 3 experienced CQI

40 : ——

30 i
n ||||w""m|||

10 |

0 T

0 20 40 60 80 100 120 140 160

Resource blocks (%)
N
o

Time (sec)

(e) UE 3 allocated slices. Red line indicates a
fair sharing scheme with 33% of resources.

Fig. 10. UE 3 QoE with and without the AI unit equipped with CNN-LSTM.

an equal percentage of 8% during the whole experiment. This is done
in an effort to show the results of poor resource management by a fair
resource allocation algorithm that provides fixed and equal resources
to every UE. Noticeably, a slice of 8% is the minimum that keeps a UE
connected to the network in our topology. Moreover, it suffices for the
light applications, namely the NGINX and SIPp, on maintaining a high-
quality connection. However, the most resource-intensive application,
WebRTC, suffers from a lack of resources with a slice of that value.
On the other side, a fair algorithm that assigns a slice of 33% to
every UE (maximum possible by the default configuration) provides
enough resources to all apps but leads to a massive over-provisioning.
In specific, it wastes huge amounts of resources for the NGINX and SIPp
that could be used to enhance the QoE of the other UEs. Thus, our target
is to utilize the AI unit to dynamically and efficiently allocate the slices
avoiding over-provisioning to NGINX and SIPp and under-provisioning
to the WebRTC.

To begin, the subplots 8(a) and 8(b) illustrate the apps used by
UE 1. At first, UE 1 interacts with WebRTC until approx. 80 s, when
the Nginx is used in two bursts (70-90 and 120-150 s). Moreover, the
Jitter experienced with the default network slicing is higher initially
and gradually decreases, while the CQI fluctuates around low values
(6-10) almost during the whole experiment. Noticeably, the algorithm
provides the slices on demand by increasing the resource blocks at the
maximum of 40% in the first part of the experiment (until 80 s), where
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the demand is clearly higher; the UE interacts with the WebRTC, the
Jitter is high and the CQI is poor. Subsequently, the demand declines
as the UE 1 switches to the Nginx, the Jitter values decrease and the
CQI rises until it plateaus to around 13, at the end of the experiment.
Therefore, the slicing percentage gradually decreases until it plunges
at the minimum of 8%, after around 140 s. This slicing management
contributes positively to the QoE of UE 1. Specifically, by comparing
the network performance of the default slicing algorithm with the Al-
unit’s, we can see that the Throughput increased reaching even 1 Mbps
with the Al-unit when it used to have around 0.2 Mbps as shown in
Fig. 8(a). In Fig. 8(b), we do not observe any changes since the Nginx
is not demanding and it has already reached its peak with the default
slicing. Finally, the Jitter falls to lower levels at approx. 10 ms with the
guidance of the Al-unit from the 30 ms that it used to be.

Regarding UE 2 (Fig. 9), we see the opposite behavior. In particular,
at first UE 2 interacts with the SIPp until approx. 100 s, when it
switches to the WebRTC. Moreover, the Jitter remains constant during
the whole experiment at 15 ms, as shown in Fig. 9(c), while the CQI
seems to slightly fall at 10-12 values (9(d)). Noticeably, the algorithms
provide a low percentage of resource block at first until around 80 s,
where the demand is relatively low since the quality of the connection
is quite good (CQI and Jitter) and the utilized service, the SIPp,
is of medium priority. Later, the provided resources are moderately
increased to an average of 28% due to the usage of the WebRTC.
Importantly, they do not reach higher levels as the link quality is still
quite good. Consequently, the QoE of the UE 2 is substantially peaked.
Particularly, the WebRTC reaches 4 Mbps Throughput with the Al-unit
when it used to reach only a negligible amount of 0.5 Mbps with the
default configuration.

Regarding UE 3, the WebRTC is used in the middle part of the exper-
iment, from 50 to approx. 100 s. Additionally, the Nginx is used majorly
in the second part at around 100 s. The Jitter values are relatively low
at an average of 5 ms given that the CQI is extremely high (15) almost
during the whole experiment, except for the last 30 s when it slightly
declines to around 11. For these reasons, we observe that the slicing
allocation mechanism provides few resources during the first part (no
more than 16%) until approx. 70 s, when the WebRTC Throughput is
substantially increased demanding more resources. Then, the algorithm
raises the resources to 28% and subsequently drops them to 12% at
around 100 s since the WebRTC is not used anymore. Following that,
the slicing scheme gradually increases the resources of the UE 3 until
they reach a climax of 36% between approx. 130 to 140 s in an effort
to cope with the drop in the link quality (which is at the lowest level).
Generally, the Al-unit assists in the advancement of the QoE since the
WebRTC Throughput is increased from 0.5 to 4 Mbps and the Jitter
drops from 10 to 5 ms during the second part of the experiment.

Overall, the QoE of all UEs is clearly enhanced given that the
Throughput and Jitter performances are ameliorated. Moreover, the
slices are provided in a sophisticated way so as to avoid over- and
underprovisioning. In fact, this is illustrated in Figs. 8(e), 9(e), 10(e).
The red line depicts a value of 33%, which would be the highest slice
that could be allocated by a UE with a fixed and fair slicing algorithm.
Importantly, our dynamic scheme is able to surpass this limit when
the demand for resources is extremely large as well as to decrease the
resources dramatically lower than this percentage when the connection
quality is excellent giving, this way, the chance for link improvement
to other UEs in the network.

4.3. Online - Distributed training

To evaluate the MLOps architecture, we run scenarios with new
traffic patterns. In specific, we slightly altered the noise distributions
in the augmentation steps (Section 3.2.3) for the new scenarios. In the
steps where the standard normal distribution was utilized, we replaced
it with an AWGN with a mean of 0 and sd of 1.5. Moreover, we replaced
the AWGN with a mean of 0 and an sd of 10 with a new distribution
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of the same mean but an sd of 15. Thus, we represent a small change
in the distribution of the traffic pattern since the baseline patterns still
exist in the new scenarios. We noticed that as soon as the new traffic
patterns arrived, the predictions deviated quite a bit and the accuracy
dropped immediately below the predefined threshold (70%) as shown
in Fig. 12. Then, the Kubeflow Pipeline was triggered and started the
process of distributed training. In between, the slicing decisions were
defined reactively. After the training was over, the updated model
started to make predictions again with high accuracy. Noticeably, it
converged quite fast with approximately only 20 new samples-scenarios
(50 min of receiving new samples and updating the model in real-time).
It is fast since 300 samples were used for the offline training. Overall,
the ability of the scheme to cope with the new patterns relies on many
components. First, the differences between the new pattern distribution
with the one that the model has converged previously. The bigger the
difference the larger the number of new samples required. Further, the
processing power of the infrastructure is vital. For instance, Graph-
ics Processing Units (GPUs) and TPUs outperform CPUs substantially
accelerating the updating.

To evaluate our distributed training architecture we scale our clus-
ter up to six NITOS nodes that carry octa-core processors (Intel-Core
i7-3770 at 3.40 GHz Processor). Observing Fig. 13(a), the increase in
performance is almost linear as the training time seems to converge at
6 CPUs succeeding in reducing training time by half. This optimization
of training time enables us to train the model as quickly as possible
and to be able to cope more accurately with the predictions of the most
recent data of traffic and network conditions. It is worth noting that the
training data were taken from a sample of the entire dataset: 20 scenar-
ios with 18 columns-features. The distributed training is applied to our
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cluster (NITOS Testbed) where only CPUs are used and the purpose of
this experiment was to show how beneficial it is to use all resources si-
multaneously in the case of online training. The CNN-LSTM model was
employed for the experiment. Performance can be further enhanced by
utilizing a GPU cluster. In addition, load balancing is ensured in our
cluster as illustrated in 13(b). In this experiment, we compared the CPU
usage for the training of the model between a single machine-container
and distributed 3 pods - 3 nodes synchronous all-reduce training. We
notice that the single pod has almost 4 times CPU usage compared to
the distributed pods which consume resources evenly in the cluster.
These measurements were taken from the Prometheus adapter which
we integrated into the cluster for resource monitoring.

5. Limitations and discussions

While our results add valuable insights to the evolving domain of
slicing in cloud-native 5G Networks, it is important to recognize the
limitations of our infrastructure. The constraint on the number of UEs,
capped at three, was a practical consideration due to the challenges as-
sociated with establishing connections in our real telecommunications
network setup. The setup operates as a private 5G network where the
application usage is more static, meaning the variety of applications
that the users interact with, is relatively fixed. This may not fully
represent the dynamic nature of application usage in public 5G net-
works, where applications with different network requirements may be
in use simultaneously. To address this, extensive datasets that capture
a wide range of user behaviors, application interactions, and network
patterns are essential. These datasets will serve as the foundation for
training machine learning models and refining the slice allocation
algorithm to handle the intricacies of dynamic application usage in
public 5G networks. Also, by increasing the scale of the experimental
setup by connecting a larger number of end devices is crucial to
emulate the complexities of public networks. This expansion allows
for a more comprehensive evaluation of the slice allocation mecha-
nism’s performance in diverse and dynamic scenarios. Nevertheless, the
service-aware slice allocation mechanism provides an end-to-end solu-
tion that can be directly plugged into any type of telecommunication
network, regardless of the operator. From a performance perspective,
there can be limitations concerning the real-time packet inspection
and classification, as the overall cell throughput is increased. Such
limitations can be easily overcome, when employing data-plane traffic
accelerators in the network, for bypassing the operating system stack
and providing direct access to the network. Implementations of libraries
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such as DPDK, enhanced Berkeley Packet Filters (eBPF) or employing
a Vector Packet Processing (VPP) methodology in the packet handling
can offer significant gains in performance, especially in the cases where
the overall network traffic reaching the UPF surpasses 1 Gbps. The
aforementioned limitations provide avenues for future work, including
extending the experimentation to larger-scale setups, exploring the
performance of the slice allocation mechanism in public 5G networks
with dynamic application usage, and investigating solutions to handle
multiple UEs.

6. Conclusion

In this work, we developed and experimentally evaluated an ML-
driven approach for defining the optimal slice application in the cellular
5G network, based on the applications that are hosted on top. Our
framework can autonomously decide on the allocations, based on the
ML-driven classification of the traffic and the mobility of users, pro-
viding near-real-time performance. The selection of the ML model
was determined after experimenting with several neural network-based
approaches, with the one performing optimally being a CNN-LSTM
stacked model for our data. The solution is able to analyze and clas-
sify traffic from different applications correctly. At the same time, it
considers the user’s connection quality, and appropriately enforces the
slices in the network. In the future, we foresee wrapping parts of our
contribution into xApps and porting our solution to the O-RAN archi-
tecture. The detailed implementation instructions and code repository
can be accessed on GitHub: GitHub.! Additionally, partial datasets and
code configurations for the framework are provided in [42].
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