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Abstract—SLICES-RI is the outcome of several years of
evolution of the concept of a networking test platform, that
has recently transformed into a scientific instrument for the
assessment of new research challenges in the Digital Infrastruc-
tures domain. Making large-scale scientific instruments easily
accessible has always been challenging, often hindered by the
complexity of the underlying platforms, the size and diversity of
resources and the low-level settings that experimenters need to
configure. Emerging technologies such as artificial intelligence
(AI) have ignited a wave of innovation, inspiring companies,
professionals, and researchers to incorporate chatbot assistants
into their projects. These assistants revolutionize user experience
by simplifying access to information and resources, significantly
increasing productivity and presenting a familiar interface. In
this work, we introduce slAIces, an LLM-based chatbot specifi-
cally designed to ease access to the SLICES-RI. slAIces utilizes
the Generative Pre-trained Transformer (GPT) GPT-4 model to
create a sophisticated Retrieval Augmented Generation (RAG)
system. This system provides external knowledge by leveraging
a properly preprocessed dataset, which includes documentation
from SLICES-RI and all integrated testbeds. The contribution
of this study lies in its methodology and recommendations
for enriching the information on the test platform to enhance
the quality of the service provided. We demonstrate that this
chatbot significantly reduces the learning curve for new experi-
menters to become acquainted with the infrastructure. It exposes
the appropriate level of abstraction, enabling experimenters
to conduct complex experiments mobilizing the extensive and
diverse resources available within a large-scale infrastructure like
SLICES-RI.

Index Terms—LLM, RAG, chatbot, SLICES, Research Infras-
tructure, GPT

I. INTRODUCTION

Research Infrastructures (RIs) have emerged as key compo-
nents for validating research outcomes in domain sciences.
Such instruments need to keep up with the most recent
advances in technology, offering bleeding-edge resources to
researchers, and integrating the most advanced features that
accelerate the materialization of new ideas to research out-
comes. As such, SLICES [1], [2] is the first RI defined as a
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scientific instrument in the Digital Infrastructures (DI) domain,
able to offer cutting-edge resources for experimentation to
researchers of the field, while providing them with structured
experiment lifecycle management from the design phase, to the
deployment, evaluation, archiving and post-experiment analy-
sis. The resources offered by SLICES are defined based on
thought experiments, spanning a wide range of programmable
infrastructure, from Open-RAN and beyond 5G networks to
edge and High-Performance Computing (HPC) and IoT.

However, retrieving documentation needed for bootstrap-
ping the experimentation process, as well as identifying the
appropriate resources in such complex environments can be a
very tedious task, especially for new users of the RI that are
not yet familiar with the specific methodologies that need to be
followed in order to get started with the experimentation pro-
cess. To this aim, tools that increase the user-friendly interface
for on-boarding users with the facilities are needed to increase
the attractiveness and overall usability of the RI. Generative AI
and Large Language Models (LLMs) have emerged as tools
that can simplify to a large extent the creation of new human
interpretable content based on existing knowledge that they
have access to. Based on their training inputs, such models
are able to create content by combining knowledge from
multiple sources, including even automatic code generation,
that can be used in the context of user support for RIs. In
this work, we present slAIces, an LLM-based chatbot for
lowering the barrier for new users experimenting with the
SLICES-RI. slAIces uses the well-established Generating Pre-
trained Transformer (GPT) 4 model for generating output
for accessing the infrastructure, including selecting the most
appropriate nodes depending on the type of experiment that the
users need to conduct, while receives as input the documen-
tation of each SLICES-RI testbed (incl. hardware capabilities,
supported types of experiments, etc.). This manuscript presents
the design choices, lessons learned and recommendations
from the development and the model training process, and
a framework evaluation based on the inputs provided from the
online documentation sites of the different SLICES-RI nodes.

The rest of the paper is organized as follows: Section II
presents our related work and different models that can be
used for generating content. Section III presents our overall ar-
chitecture and the selected LLM configuration for the slAIces
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agent. In Section IV, we evaluate our agent under different
training inputs, highlighting the importance of the choices
made during the design and development process. Finally, in
Section V we conclude and present some future directions.

II. MOTIVATION & RELATED WORK

A researcher, with no familiarity with the SLICES in-
frastructure, can benefit from the capabilities provided by
the slAIces chatbot. Indeed, it can significantly reduce the
time it takes to learn the experimental platform and help the
experimenter unlock the full potential of SLICES-RI much
more rapidly than traditional methods would allow.

When designing an LLM-based chatbot, it is important to
consider how the LLM model will acquire special-purpose
knowledge. Authors of paper [3], present insights on how
LLMs can be used to integrate and apply domain-specific
knowledge with the usage of in-context learning (ICL), pro-
viding the techniques, and challenges of ICL. One widespread
way of integrating an external source of knowledge into LLM,
based on ICL and structuring the retrieval information part,
is through Retrieval-Augmented Generation (RAG) systems.
Paper [4] provides a brief analysis of the architecture of the
different components and the advancements of RAG systems,
analyzing different sophisticated models such as Naive RAG,
Advanced RAG, and Modular RAG. It also proposes methods
for evaluating a RAG system, many of which were utilized
to evaluate our proposed system in section IV. Paper [5],
explores a different way to construct domain-specific LLMs
via Fine Tuning (FT). The authors implement a comprehensive
approach for the FT process, analyzing various aspects such
as dataset selection, preprocessing, model choice, particularly
focusing building LLMs for the financial field.

Authors of [6] explore applying an LLM model using the
domain-specific knowledge of surface engineering, having as a
dataset a list of scientific papers of the field, using the indexing
method. This work highlights the importance of integrating
advanced AI tools with expert knowledge, to enhance accuracy
and relevance in a specialized field (such as the surface-
engineering) oriented queries. Exploring the integration of
LLMs into specialized domains, it is worth mentioning the
work [7], which provides LLM-powered agent assistance into
the video editing workflow, aiming to simplify complex editing
tasks such as automatically generating descriptions for footage,
enabling the LLM to execute editing tasks based on user ob-
jectives and others. The survey in [8] explores the use of LLMs
in developing autonomous agents, noting a departure from
previous research focused on agents with limited knowledge
in isolated environments. It presents a detailed examination
of the architecture, diverse applications, methodologies for
assessment and challenges of LLM-based autonomous agents,
thus providing very important details on the design and imple-
mentation of slAIces. The paper [9] delves into the evolution
and challenges faced by Virtual Intelligent Assistants (VIAs)
such as Amazon Alexa and Google Assistant, which have
gained prevalence in recent years. It explores new research
directions focused on understanding multi-modal contexts,

and personalizing assistant services to provide insights for
researchers and practitioners while emphasizing the pivotal
role of LLMs in enhancing these strategies.

In this work, we pioneer the development of an advanced
RAG system using the special purpose data sourced from the
SLICES RI documentation, enriched with a strategic usage of
GPT4 and combining both ICL and FT methods. This system
aims to provide an improved user experience for experimenters
of the SLICES RI infrastructure to reduce the learning curve
for new users, increase the research productivity and assisting
in experimental design and planning.

III. ARCHITECTURE AND LLM CONFIGURATION

To design SlAIces, we employed a structured framework
development strategy, which consists of four key stages: data
preparation, designing and implementing a RAG system, LLM
fine-tuning, and user querying via an appropriate environment.
The overall integrated architecture can be observed in Figure
1. The initial stage involves acquiring SLICES data from
diverse websites using the web scraper described in subsection
III-A. Subsequently, raw data is appropriately enhanced by
enriching both the textual content and the code content. This
enhancement process involves leveraging the online GPT-4
model, which is manually utilized to upload our data for
further enrichment. In addition, our domain expertise is lever-
aged to supplement this process. The RAG system consists
of a pipeline of different functions that are responsible: 1)
for breaking and storing the data in suitable data structures
(indexing), 2) retrieving the most similar information to the
user query from the data (retrieval), 3) constructing a prompt
that contains the retrieved information as long as the user
query (prompting), 4) using an LLM to get the response of
the user query (LLM-Output). Following these, we proceed
with deploying the chatbot service onto one of our SLICES
servers. In order to provide a user-friendly interface, we have
established a link between the SLICES server (housing the
deployed chatbot) and a Discord server. This integration allows
users to interact with the chatbot directly through the Discord
server, simplifying the process and providing a more intuitive
interface for the end user. The server is also integrated to the
online portal, to provide a conversational experience to the
users that want to conduct experiments within the SLICES
infrastructure. The basic concepts and functionalities of our
system are further explained in the subsections below.

A. Data acquisition

The data that will feed our model are sourced primarily
from the official website of SLICES-RI [10] as well as the
links within its contents that point to educational and training
material, such as tutorials for students and researchers to
become familiar with various frameworks and technologies
that each integrated testbed of SLICES-RI is equipped.

To be able to automatically retrieve the required informa-
tion from the aforementioned documentation websites, a web
scraper was developed, designed to operate in two stages. In
the first stage, all the links and URLs inside the documentation
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pages are tracked recursively from the root website, with the
help of the urllib library. After gathering all the referral URLs
on the visited websites, duplicate URLs are removed to create
a unique set of URLs. Subsequently, a manual review and
evaluation of the content of the web pages is performed,
to evaluate its relevance and value to be included in the
dataset. In the second stage of the web scrapper, the web
page data is retrieved and converted from HTML format to
text through the Beautiful Soup library. Given the variation in
website designs among the SLICES-RI testbeds, the code was
adapted according to each website-specific design to extract
the information correctly. At this stage, the data from each
website is stored in distinct files, allowing a modular approach
to removing/adding new information to the model.
B. Data augmentation

This step is mandatory to make our system efficient. Al-
though the retrieved data from the documentation sites are
interpretable by humans, they can be less beneficial for LLMs.
LLMs, in contrast to humans, struggle to understand complex-
ity and ambiguity since they lack real-world understanding.

The learning process for humans versus the one for LLMs
significantly differs, especially in tutorials. A human can
approach tutorials already having a basic understanding of the
technology and the ontology of the various entities and com-
ponents used in them. Foundational knowledge makes it easier
for humans to make new connections among the different parts
of information as long as they can easily grasp new concepts.
Tutorials mainly point to hands-on experience, not providing
depth in theory. In addition, the reader of the tutorials can refer
to other sources besides the tutorial and its own references.
However, none of these applies to LLMs, since LLMs lack
ontological understanding. They realize text based on patterns
observed using statistical correlations in their training data
and not using relationships to convey meaning. LLMs also
suffer from Referencing Limitations since their knowledge is
restricted only to their training and In-context Learning (ICL)
dataset, without external post-training resources.

Our raw dataset, provided by the documentations, presents
gaps and deficiencies for appropriate LLM training, with
respect to clarity, depth, or specificity of different information.
To address such vulnerabilities, we enriched our dataset with
comprehensive vocabulary as well as with an extensive and
precise description of the theory (e.g. component’s architec-
ture, terminology, etc.). We employed the popular ChatGPT AI
system [11] based on GPT4 model [12] to perform this en-
hancement. Following that, we restructured the generated text,
into smaller paragraphs with titles emphasizing the context of
their body. We validated rigorously, and thoroughly checked
the data enhancement to ensure that we did not add vague
information and pollute our data with noise, since ChatGPT
can make mistakes.

C. In-context learning & Fine Tuning

A diverse amount of publicly available internet text data,
such as websites, Wikipedia, Common Crawl, articles, as
well as scientific papers, have been used to train GPT. This

extensive training leads LLMs to identify patterns observed
using statistical correlations, and identify grammar, syntax,
and semantics, achieving a significant amount of general
knowledge. Although GPT has tremendous performance in
general-purpose knowledge, it looks very vulnerable to spe-
cific domains, such as providing assistance to SLICES RI in-
frastructure, where domain-specific knowledge and contextual
understanding are crucial. For an LLM model to be updated
with special-purpose data, there are two popular methods: in-
context learning via a RAG system and fine-tuning.

1) In-context learning via a RAG system: The first ap-
proach, in-context learning, feeds the LLM with special-
purpose data and by providing extra information in the prompt,
without any parameter updates or fine-tuning. This method
utilizes a RAG system to insert context into the input prompt,
allowing the LLM to generate responses by leveraging its
reasoning capabilities. Our RAG implementation follows the
Naive RAG architecture as described in [4] and has three nec-
essary axes: Data Ingesting, data indexing and data retrieving.

Data ingestion refers to how the contents of files in different
formats (CSV, JSON, XML, PDFs, etc.) can be converted into
data structures. Subsequently, Data Indexing is responsible
for organizing, storing, and efficiently accessing the converted
data. Several proposed index schemes can be used in different
use-case scenarios. A node in the data Indexing world, rep-
resents a chunk of source data from a document, regardless
of its type. There are multiple index schemes available, such
as List Index, Vector Store Index, Tree Index and the key-
word index. The data retriever is responsible to identify the
most similar data nodes of the indexed dataset to include its
content to the prompt. Our system utilized the open-source
library Llama [13] to manage the data ingestion, indexing and
retrieving procedures of slAIces implementation.

2) Fine Tuning (FT): Fine-tuning (FT) is another strategy
to integrate specific-domain knowledge into an LLM than
ICL. The strategy mainly focuses on training a pre-trained
model using domain-specific datasets to incorporate data from
specialized fields. Using a pre-trained model offers consid-
erable advantages compared to an LLM that is exclusively
trained with our private data. One of the most important ones
is efficiency, since training the model from scratch requires
significant computational resources, time, and an enormous
dataset to learn language understanding. FT changes the
model’s weight through additional training, improving perfor-
mance on domain-specific tasks. During the FT process, great
attention was given to the parameters that will be modified so
that they maintain the performance of our model and not to
become overfit.

The strategy of FT is not as straightforward as that of In-
context learning. Since the FT process is designed to adjust
the model’s parameters using examples of input-output pairs,
we have to change the format in which the data are fed to
the model. Instead of giving the information in raw text as in
Section III-C1, all information intended for training should be
converted into a query-answer format to be used as a prompt.
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Following this, our dataset should be structured in a prompt-
completion format as described in the Fine-tuning Guide [14].
We decided to fine tune the model with a portion of the dataset
that LLM had difficulty responding when using only ICL.
OpenAI does not support fine-tuning for GPT-4 yet, since
it is at an experimental stage at the time this manuscript is
written. For this work, FT used GPT-3.5-turbo-0125 limiting
the model’s capabilities compared it to the GPT4.

ICL and FT are two complementary techniques that can
enhance a model’s capabilities on distinct levels without being
mutually exclusive. Our chatbot assistant is of considerable
complexity, primarily because it must deliver not just theoret-
ical knowledge but also detailed instructions and advanced
information across a multitude of configurations, console
outputs, commands, architectural concepts and many more. To
deal with this issue, it is critical to integrate both FT and ICL
into our development process. With ICL we are capable of
providing the model with all the information, including even
the slightest detail. On the other hand, FT is inevitable, since
it helps the model to deeply understand our specific dataset,
enabling it to interpret the meanings of different data types
and follow advanced procedures.

Fig. 1: System Architecture

IV. EVALUATION

In Section IV-A, we describe our evaluation methodology
between the generated dataset after the enrichment process
(see Section III-B), and the raw one. Then, in Section IV-B
we examine the system performance by leveraging multiple
choice and open-ended questions using the original and the
enhanced data as long as the fine-tuned LLM (Section IV-C).

A. Datasets

To compare the enriched dataset against the raw one, we
followed the popular dataset evaluation method described
in [15], which analyzes critical LLM dataset characteristics
such as data size, comprehensiveness, and how easily we can
retrieve data from it.

1) Data size & Vocabulary uniqueness: As already men-
tioned, LLMs are based on identifying patterns observed using
statistical correlations. The enhanced dataset is obviously
larger than the raw data. Although, presenting only its size
would not support the efficiency of our proposed dataset.
That is why we focused on the vocabulary uniqueness, which
defends that the diversity and the richness of the dataset not
only offer a large quantity of text to the indexing mechanism of
RAG, but also exposes it to a wide variety of words, phrases,
and linguistic structures. This plays a crucial role, especially
in the ICL and the way the RAG system will provide the
necessary information to the model query.

The enriched data size is approximately 20% bigger than the
raw one. Figure 2a, illustrates that the enriched data have 18%
more uniqueness regarding the vocabulary, implying a highly
efficient enrichment process without leading to an overload
dataset, since the additional text is just a lexical restructuring
of meaning and content of the raw data.

2) Data comprehensiveness: This lexical restructuring,
alongside with the necessary explanation provided to some
contexts of the original dataset (such as a more brief expla-
nation of programming commands, more detailed technology
architectural analysis, and theory), has led to a clearer onto-
logical existence of entities in the enhanced dataset. Such an
example of an entity could be the 5G components, different
kind of testbed equipment and others. Entities have a crucial
role in a dataset’s comprehensiveness since they reflect real-
world complexity into it. To validate the enrichment process in
concern to a more structured and well-written enhancement,
we utilized the biggest pre-trained model of SpaCy library,
en core web lg [16], which is a popular large English model
designed for general-purpose Natural Language Processing
(NLP) tasks, to identify entities.

 0

 2000

 4000

 6000

 8000

 10000

Original Data Enriched Data

V
o
c
a
b
u
la

ry
 C

o
u
n
te

r

6971

8288

Vocabulary Uniqueness Across All Files

(a) Overall Vocabulary Uniqueness
Across All Files

 0

 1000

 2000

 3000

Original Data Enriched Data

U
n
iq

u
e
 E

n
ti
ti
e
s
 C

o
u
n
t

1458

2077

Total Unique Entities Across All Files

(b) Total Unique Entities Across All
Files

Fig. 2: Data Comparison: Vocabuary & Entities Uniqueness

Following the results of the vocabulary analysis, we con-
tinued the evaluation of our enhanced dataset to its entity
dimension, comparing it to the original one. As unique entities,
we identify each distinct entity that the model was able to
recognize in our datasets, counting each entity only once,
regardless of how many times it appears across the data. This
ensures that even if an entity is observed multiple times, it
is included as a single entry in the final set of identified
entities. Figure 2b, illustrates a 42.5% increase in the total
unique entities of the enriched data identified by the entity
model. It is worth mentioning that the model fed with the
original data, could not understand some key components
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of SLICES tutorials, such as the F1 interface, which is an
important interface in the distributed 5G RAN architecture.
These results indicate that the descriptive power and utility of
the enhancement lead to an ML model being able to identify
domain-specific terms and concepts.

3) Retriever Analysis: To assess our RAG implementation,
we need to find suitable metrics, such as the similarity metric,
that describe the process of finding the index’s nodes that
match the user queries. The proposed RAG system, imple-
mented with the usage of the Llama library is based on the
following strategy: Initially, the retriever is responsible for
fetching the most relevant context from the available index
nodes based on the query’s degree of similarity and the node’s
content. The topology of the nodes could be one of those
described in III-C1. Following that, the NodePostProcessor
accepts a set of retrieved nodes as input and then applies fil-
tering, augmentation, and replacement transformations. In our
implementation, we used the Vector Store Indexing topology
and the NodePostProcessor, to perform filtering based on the
similarity metric. We set as a lower limit the value at 0.8, to
support the model being fed with a lot of data with relevant
content when we have a high degree of similarity, and with
less when data’s content is not so relevant. Finally, there is
the response synthesizer, which takes the transformed set of
nodes from the NodePostProcessor and, based on their content,
forms the information that our system will provide to LLM
(such as GPT-4 in our case) to generate the response.
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Fig. 3: Retriever Similarity Percentage

We used the retrieving process to evaluate the impact of our
enhanced dataset over the raw one. As already mentioned,
the retriever is able to identify nodes of the indexed data
with similar content to the user query. Figure 3 illustrates the
average similarity scores from the ith nodes obtained by the
retriever for the open-ended questions described in Section
IV-B. As depicted, the retriever in the case of enhanced data
can recognize a higher similarity degree of the top k nodes (5
in our case), having an average of 5% higher similarity over
the raw data.

B. Performance Evaluation - In-context Learning

To further assess the chatbot’s performance before and
after data augmentation, we have also generated 25 multiple-
choice questions and open-ended questions from our datasets,
which can be found in [17]. It is important to mention that
each question was formulated across a diverse range of data
sources and was structured to have answers that had small
deviations from the correct one, in order to increase the level
of difficulty. Subsequently, the questions were first presented

TABLE I: Question Responses per Model & Dataset

Question Which nodes of the NITOS testbed should I use to deploy the
5G RAN using USRPs according to 5G Blueprint?

Original
Data with
GPT-4
Model

The given context does not provide specific details about the nodes
of NITOS that can deploy 5G RAN using USRPs according to
the 5G Blueprint. Detailed information regarding this would be
required to provide a precise answer.

Enhanced
Data with
GPT-4
Model

The NITOS testbed nodes that are capable of deploying
the 5G RAN using USRPs, according to the 5G Blueprint,
are: node055, node056, node059, node060, node067, node068,
node071, node072. These nodes are equipped with USRP B210
models, which are connected via USB 3.0. The USRP B210
devices are particularly significant for 5G research due to their
wide frequency range and high bandwidth capabilities, enabling
researchers to simulate and analyze various aspects of 5G net-
works.

Enhanced
Data - GPT-
3.5

To deploy the 5G RAN using USRPs according to the 5G
Blueprint in the NITOS testbed, you should utilize the nodes
equipped with USRP N210 and USRP B210 devices. Here are
the specific nodes that you should use for this purpose: USRP
N210 Nodes: node052, node064, node080 USRP B210 Nodes
(Connected via USB 3.0): node055, node056, node059, node060,
node067, node068, node071, node072.

Enhanced
Data -
Fine-Tuned
GPT-3.5

The NITOS testbed encompasses specific nodes equipped to
facilitate the deployment of 5G RAN experiments utilizing USRP
devices. According to the 5G Blueprint, the following NITOS
nodes are suitable for this purpose: node055, node056, node059,
node060, node067, node068, node071, node072. These nodes are
instrumental in realizing advanced 5G RAN scenarios, enabling
researchers to leverage the versatile capabilities of USRP B210
models for comprehensive and cutting-edge experiments.

to the RAG system with the original dataset, and then to the
same model indexed with the enhanced dataset. The RAG
system was prompted the same way for both the raw and
the enhanced dataset, outlining the role of RAG as a chatbot
assistant, as well as generating responses based only on the
information provided to it. As depicted in Figure 4, the
correctly-answered questions percentage by the model with
the original-data was 76%, in contrast to the enhanced-data
model that achieved 96%. This difference suggests a huge
performance improvement, as it underscores the importance
of data augmentation in enhancing the chatbot’s understanding
and response accuracy.
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Since there is no deterministic way to evaluate the validity
of an open-ended response from LLMs formed from multiple
data sources, we adopted the human validation method. Using
our domain expertise and dataset familiarity, we checked the
generated responses in terms of validity, closeness, clarity and
descriptiveness for both datasets (original & enriched).

Regarding the open-ended answers, the model that uses the
enhanced data provided responses with more precision and in-
cluded more information compared to the model using the raw
dataset. When it came to modifying code and configuration
files, both models achieved the expected outcomes, with the
responses from the RAG system using the enriched data being
more solid, especially in the reasoning part. For example, as
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depicted in Table I, when asking the same question (Which
nodes of the NITOS [18] testbed should I use to deploy the
5G RAN using USRPs according to 5G Blueprint [19]?) to
the GPT-4 model, the chatbot did not respond in the case of
raw data, in contrast to the enhanced one, which answered
correctly. At this point we note that the same information
was present in both datasets, but the GPT-4 model could not
successfully identify or interpret it to produce good responses.

C. Performance Evaluation - Fine Tuned Model

As already mentioned in Section III-C2, we fine-tuned the
LLM model used in our RAG system. The fine-tuning was
carried out to describe general strategies that we want our
model to adopt, as well as to address specific weaknesses that
we observed during the development of ICL, giving the model
the desired functionality and behavior. At the time of writing,
no publicly available version of GPT-4 was available for fine-
tuning. To perform fine-tuning, we limited our research to the
available model of GPT-3.5. We followed a similar evaluation
strategy as in IV-B, where we exposed our system to the same
questions (multiple-choice and open-ended).
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Figure 5 shows the percentage of correct answers brought
by our RAG system, when utilizing either the standard GPT-
3.5 model or the fine-tuned GPT-3.5 Turbo, in combination
with the enhanced dataset. As expected, the fine-tuned model
achieved 88% correct answers, which suggests a great im-
provement to the default model, that achieved around 80%.
This highlights the necessity of fine-tuning an LLM, in or-
der to fully exploit the model’s potential and achieve better
performance, especially in the case of specific-domain data. It
is worth noting that the fine-tuned GPT-3.5-turbo model does
not perform better than the default GPT-4, giving even greater
margins of correct answers to a fine-tuned GPT-4 model.

In the case of open-ended responses, we have observed that
the fine-tuned GPT-3.5 model was able to answer sophisticated
and complex questions with quality reasoning, in contrast to
the GPT-3.5 (with enhanced data).

An example of such differences can be seen in Table I.
The correct answer should only include nodes equipped with
USRP B210s and not those with USRP N210s as illustrated
in [19]. The GPT-3.5 provided all the nodes equipped with
USRPs, even though not all USRP models are suitable for
deploying the 5G Blueprint. Fine-Tuned GPT-3.5 managed to
provide only the nodes suitable for conducting the experiment
(similar answer to GPT-4 Model).

V. CONCLUSION & DISCUSSION
In this work, we introduced slAIces, a sophisticated chatbot

assistant designed to facilitate and enhance the user experi-
ence within SLICES-RI, a complex and large-scale research
infrastructure. We presented our methodology and developed
a RAG system, employing both In-context learning and Fine-
tuning, which represent two popular methods of acquiring
special-purpose knowledge to an LLM. Through rigorous
testing and evaluation, we concluded that the quality of the
chatbot’s responses was significantly improved with the data
enhancement (GPT-4) and the fine-tuning (GPT-3.5) processes,
resulting in accuracy of 96% and 88% in correctly answering
multiple-choice questions, respectively.

In the future, we foresee to improve the capabilities of our
chatbot by developing an execution multi-agent mechanism,
that will automate the experimental workflow and the pro-
cess of experimentation. This includes several stages such as
experiment design, resource reservation, experimentation and
result collection. In addition, we aim to develop a closed-
loop system that will utilize valid experiment results that
have been conducted in the SLICES-RI Infrastructure and
subsequently include this data to the main dataset. This will
enhance the chatbot’s ability to adapt to the needs of the
research community, moving beyond tutorial support.
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